An update on orthogonal polynomials and weighted approximation on the real line

Acta Applicandae Mathematicae - Tập 33 - Trang 121-164 - 1993
D. S. Lubinsky1
1Department of Mathematics, University of the Witwatersrand, Rep. of South Africa

Tóm tắt

We briefly review the state of orthogonal polynomials on (−∞, ∞), concentrating on analytic aspects, such as asymptotics and bounds on orthogonal polynomials, their zeros and their recurrence coefficients. We emphasize results rather than proofs. We also discuss applications to mean convergence of orthogonal expansions, Lagrange interpolation, Jackson-Bernstein theorems and the weighted “incomplete” polynomial approximation problem.

Tài liệu tham khảo

N. I. Akhiezer,The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965. R. Askey, and S. Wainger, Mean Convergence of Expansions in Laguerre and Hermite Series,Amer. J. Math. 87 (1965), pp. 695–708. W. C. Bauldry,Orthogonal Polynomials Associated with Exponential Weights, Ph.D. Thesis, Ohio State University, Columbus, Ohio, 1985. W. C. Bauldry, A. Máté, and P. Nevai, Asymptotics for Solutions of Systems of Smooth Recurrence Equations,Pacific J. Math. 133 (1988), pp. 209–227. C. Berg, and M. Thill, Rotation Invariant Moment Problems,Acta Math. 167 (1991), pp. 207–227. C. Berg, and A. J. Duran,The Index of Determinacy for Measures and the ℓ 2 -norm of Orthogonal Polynomials, manuscript. S. S. Bonan,Weighted Mean Convergence of Lagrange Interpolation, Ph.D. Thesis, Ohio State University, Columbus, Ohio, 1982. S. S. Bonan, Applications of G. Freud's Theory, I, in:Approximation Theory IV, C. K. Chuiet al. (eds.), Academic Press, New York, 1984, pp. 347–351. S. S. Bonan, and D. S. Clark, Estimates of the Hermite and Freud Polynomials,J. Approx. Theory 63 (1990), pp. 210–224. P. Borwein, and E. B. Saff, On the Denseness of Weighted Incomplete Approximations' in:Progress in Approximation Theory: An International Perspective, A. A. Gonchar, and E. B. Saff (eds.), Springer Series in Computational Maths., Springer, New York9, 1992, pp. 419–430. V. S. Buyarov, Logarithmic Asymptotics of Polynomials Orthogonal on the Real Axis,Soviet Math. Dokl. 43 (1991), pp. 743–746. V. S. Buyarov, Logarithmic Asymptotics of Polynomials Orthogonal onR with Asymmetric Weights',Mathematical Notes of the Academy of Sciences of the USSR 50 (1992), pp. 789–795. T. S. Chihara,An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. T. S. Chihara, Indeterminate Symmetric Moment Problems,J. Math. Anal. Applns. 85 (1982), pp. 331–346. T. S. Chihara, Hamburger Moment Problems and Orthogonal Polynomials,Trans. Amer. Math. Soc. 315 (1989), pp. 189–203. T. S. Chihara, The Three Term Recurrence Relation and Spectral Properties of Orthogonal Polynomials, in:Orthogonal Polynomials: Theory and Practice, P. Nevai (ed.), NATO ASI Series294, Kluwer, Dordrecht, 1990, pp. 99–114. G. Criscuolo, B. Della Vecchia, D. S. Lubinsky, and G. Mastroianni, Functions of the Second Kind for Freud Weights and Series Expansions of Hilbert Transforms,J. Math. Anal. Applns. (to appear). Z. Ditzian and V. Totik,Moduli of Smoothness, Springer Series in Computational Mathematics,9, Springer, New York, 1987. K. A. Driver, Nth Root Asymptotics for Extremal Errors Associated with Slowly Decreasing Weights,Quaestiones Mathematicae,14 (1991), pp. 337–354. P. Erdös, On The Distribution of the Roots of Orthogonal Polynomials, in:Proceedings of the Conference on the Constructive Theory of Functions, E. Alexitset al. (eds.), Akademiai Kiado, Budapest, 1972, pp. 145–150. G. Freud, Lagrangesche Interpolation Uber die Nullstellen der Hermiteschen Orthogonalpolynome,Studia Sci. Math. Hung. 4 (1968), pp. 179–190. G. Freud,Orthogonal Polynomials, Pergamon Press/Akademiai Kiado, Budapest/Oxford, 1971. G. Freud, Extension of the Dirichlet-Jordan Criterion to a General Class of Orthogonal Expansions,Acta. Math. Acad. Sci. Hung. 25 (1974), pp. 109–122. G. Freud, A. Giroux, and Q. I. Rahman, Sur l'Approximation Polynomiale Avec Poids exp(−¦x¦),Can. J. Math. 30 (1978), pp. 358–372. G. Freud, On Markov-Bernstein Inequalities and Their Applications,J. Approx. Theory 19 (1977), pp. 22–37. G. Freud, Markov-Bernstein Type Inequalities in Lp(−∞, ∞), in:Approximation Theory II, G. G. Lorentzet al. (eds.), Academic Press, New York, 1976, pp. 369–377. G. Freud and H. N. Mhaskar, K-Functionals and Moduli of Continuity in Weighted Polynomial Approximation,Arkiv för Matematik 21 (1983), pp. 145–161. J. S. Geronimo and W. Van Assche, Relative Asymptotics for Orthogonal Polynomials with Unbounded Recurrence Coefficients,J. Approx. Theory 62 (1990), pp. 47–69. J. S. Geronimo, D. Smith, and W. Van Assche, Strong Asymptotics for Orthogonal Polynomials with Regularly and Slowly Varying Recurrence Coefficients,J. Approx. Theory 72 (1993), pp. 141–158. M. von Golitschek, G. G. Lorentz and Y. Makovoz, ‘Asymptotics of Weighted Polynomials’ in:Progress in Approximation Theory: An International Perspective, A. A. Gonchar, and E. B. Saff (eds.), Springer Series in Computational Maths.9, Springer, New York, 1992, pp. 431–451. A. A. Gonchar and E. A. Rahmanov, Equilibrium Measure and The Distribution of Zeros of Extremal Polynomials,Math. USSR. Sbornik 53 (1986), pp. 119–130. A. A. Gonchar and E. B. Saff,Progress in Approximation Theory: An International Perspective, Springer Series in Computational Mathematics19, Springer, New York, 1992. S. W. Jha,Asymptotics for Solutions of Smooth Recurrence Equations and Their Applications to Orthogonal Polynomials, Ph.D. Thesis, Ohio State University, Columbus, Ohio, 1988. S. W. Jha,The Second Order Linear Differential Equations Satisfied by the Orthogonal Polynomials Associated with w(x) = |x| ρ exp(–x 2m)(ρ>–, m > integer) , manuscript. S. W. Jha,Asymptotics for Orthogonal Polynomials Associated with exp(−x2m) (m>1 integer), manuscript. S. W. Jha and D. S. Lubinsky,Necessary and Sufficient Conditions for Mean Convergence of Orthogonal Expansions for Freud Weights, submitted. S. W. Jha, A. Máté, and P. Nevai, Asymptotics for the Solutions of Systems of Smooth Recurrence Equations and Their Applications to Orthogonal Polynomials, in:Approximation Theory VI, C. K. Chuiet al. (eds.), Academic Press, San Diego, 1989, pp. 345–348. W. B. Jones, O. Njastad, and W. J. Thron, Continued Fractions Associated with Trigonometric and other Strong Moment Problems,Constructive Approximation 2 (1986), pp. 197–211. A. Knopfmacher, D.S. Lubinsky and P. Nevai, ‘Freud's Conjecture and Approximation of Reciprocals of Weights by Polynomials,Constructive Approximation 4 (1988), pp. 9–20. P. Koosis,The Logarithmic Integral I, Cambridge Studies in Advanced Mathematics12, Cambridge University Press, Cambridge, 1988. P. Koosis,The Logarithmic Integral II, Cambridge Studies in Advanced Mathematics21, Cambridge University Press, Cambridge, 1992. A. L. Levin, and D. S. Lubinsky, 161-02 Markov and Bernstein Inequalities for Freud Weights,SIAM J. Math. Anal.,21 (1990), pp. 1065–1082. A. L. Levin, and D. S. Lubinsky, Lp Markov-Bernstein Inequalities for Freud Weights,J. Approx. Theory (to appear). A. L. Levin, and D. S. Lubinsky, Christoffel Functions, Orthogonal Polynomials, and Nevai's Conjecture for Freud Weights,Constructive Approximation 8 (1992), pp. 463–535. A. L. Levin, and D. S. Lubinsky, Christoffel Functions and Orthogonal Polynomials for (–x2m), α≤1,J. Approx. Theory (to appear). G. L. Lopez, Relative Asymptotics for Polynomials Orthogonal on the Real Axis,Math. USSR. Sbornik 65 (1990), pp. 505–529. G. L. Lopez, and E. A. Rahmanov, Rational Approximations, Orthogonal Polynomials and Equilibrium Distributions' in:Orthogonal Polynomials and Their Applications, M. Alfaroet al. (eds.), Springer Lecture Notes1329, Springer, Berlin, 1988, pp. 125–157. G. G. Lorentz, Approximation by Incomplete Polynomials (Problems and Results), in:Padé and Rational Approximation: Theory and Applications, E. B. Saffet al. (eds.), Academic Press, New York, 1977, pp. 289–302. D. S. Lubinsky, A Survey of General Orthogonal Polynomials for Weights on Finite and Infinite Intervals,Acta Math. Applicandae 10 (1987), pp. 237–296. D. S. Lubinsky,Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdös Type Weights, Pitman Research Notes in Mathematics202, Longman, Harlow, Essex, 1989. D. S. Lubinsky, 162-02 Markov and Bernstein Inequalities for Erdös Weights,J. Approx. Theory 60 (1990), pp. 188–230. D. S. Lubinsky, The Approximate Approach to Orthogonal Polynomials for Weights on (−∞, ∞), in:Orthogonal Polynomials: Theory and Practice, P. Nevai (ed.), NATO ASI Series,294, Kluwer, Dordrecht, 1990, pp. 293–310. D. S. Lubinsky, Hermite and Hermite-Fejer Interpolation and Associated Product Integration Rules on the Real Line: The L∞ Theory,J. Approx. Theory 70 (1992), pp. 284–334. D. S. Lubinsky and D. M. Matjila, Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Freud Weights,SIAM J. Math. Anal (to appear). D. S. Lubinsky, H. N. Mhaskar, and E.B. Saff, A Proof of Freud's Conjecture for Exponential Weights,Constructive Approximation,4 (1988), pp. 65–83. D. S. Lubinsky and F. Moricz, The Weighted Lp Norms of Orthonormal Polynomials for Freud Weights,J. Approx. Theory (to appear). D. S. Lubinsky and T. Z. Mthembu, Lp Markov-Bernstein Inequalities for Erdös Weights,J. Approx. Theory 65 (1991), pp. 301–321. D. S. Lubinsky and T. Z. Mthembu, Orthogonal Expansions and the Error of Weighted Polynomial Approximation for Erdös Weights,Numer. Funct. Anal. and Optimiz. 13 (1992), pp. 327–347. D. S. Lubinsky and P. Nevai, Sub-Exponential Growth of Solutions of Difference Equations,J. London Math. Soc.,46 (1992), pp. 149–160. D. S. Lubinsky and P. Rabinowitz, Hermite and Hermite-Fejer Interpolation and Associated Product Integration Rules on the Real Line: The L1 Theory,Canadian J. Math. 44 (1992), pp. 561–590. D. S. Lubinsky and E. B. Saff, Uniform and Mean Polynomial Approximation by Certain Weighted Polynomials, with Applications,Constructive Approximation 4 (1988), pp. 21–64. D. S. Lubinsky and E. B. Saff,Strong Asymptotics for Extremal Polynomials Associated with Exponential Weights, Springer Lecture Notes in Mathematics1305, Berlin, 1988. D. S. Lubinsky and V. Totik, Weighted Polynomial Approximation with Freud Weights,Constructive Approximation (to appear). Al. Magnus, On Freud's Equations for Exponential Weights,J. Approx. Theory 46 (1986), pp. 65–99. Al. Magnus, Refined Asymptotics for Freud Recurrence Coefficients', in:Collection of Unsolved Problems of Linear and Complex Analysis, V. Havin, V. and N. Nikolskii (eds.), Springer Lecture Notes, to appear. A. Máté, P. Nevai, and V. Totik, Asymptotics for the Zeros of Orthogonal Polynomials Associated with Infinite Intervals,J. London Math. Soc. 33 (1986), pp. 303–310. A. Máté, P. Nevai, and V. Totik, Asymptotics for the Ratios of Leading Coefficients of Orthonormal Polynomials on the Unit Circle,Constructive Approximation 1 (1985), pp. 63–69. A. Máté, P. Nevai, and V. Totik, Extensions of Szegö's Theory of Orthogonal Polynomials II,Constructive Approximation,3 (1987), pp. 51–72. A. Máté, P. Nevai, and V. Totik, Extensions of Szegö's Theory of Orthogonal Polynomials III,Constructive Approximation,3 (1987), pp. 73–96. A. Máté, P. Nevai, and T. Zaslavsky, Asymptotic Expansion of Ratios of Coefficients of Orthogonal Polynomials with Exponential Weights,Trans. Amer. Math Soc. 287 (1985), pp. 495–505. D. M. Matjila, Bounds for Lebesgue Functions for Freud Weights,J. Approx. Theory (to appear). D. M. Matjila, Convergence of Lagrange Interpolation for Freud Weights in Weighted Lp(R), 0<p≤1, submitted. H. N. Mhaskar, Extensions of the Dirichlet-Jordan Criterion to a General Class of Orthogonal Expansions,J. Approx. Theory 42 (1984), 138–148. H. N. Mhaskar, Weighted Polynomial Approximation,J. Approx. Theory 46 (1986), pp. 100–110. H. N. Mhaskar, Some Discrepancy Theorems, in:Approximation Theory, Tampa, E. B. Saff (ed.), Springer Lecture Notes in Mathematics1287, Springer-Verlag, New York, 1987, pp. 117–131. H. N. Mhaskar, Bounds for Certain Freud Type Orthogonal Polynomials,J. Approx. Theory 63 (1990), pp. 238–254. H. N. Mhaskar, and E. B. Saff, Extremal Problems for Polynomials with Exponential Weights,Trans. Amer. Math. Soc.,285 (1984), pp. 203–234. H. N. Mhaskar, and E. B. Saff, Where Does the Sup-Norm of a Weighted Polynomial Live?,Constructive Approximation 1 (1985), pp. 71–91. H. N. Mhaskar, and E. B. Saff, Where Does the Lp-Norm of a Weighted Polynomial Live?,Trans. of the Amer. Math. Soc. 303 (1987), pp. 109–124. H. N. Mhaskar, and Y. Xu, Mean Convergence of Expansions in Freud-Type Orthogonal Expansions,SIAM J. Math. Anal. 22 (1991), pp. 847–855. H. N. Mhaskar and Y. Xu, Hermite Interpolation at the Zeros of Certain Freud-type Polynomials,Acta Math. Hung. 60 (1992), pp. 225–240. B. Muckenhoupt, Mean Convergence of Hermite and Laguerre Series I,Trans. Amer. Math. Soc. 147 (1970), pp. 419–431. B. Muckenhoupt, Mean Convergence of Hermite and Laguerre Series II,Trans. Amer. Math. Soc. 147 (1970), pp. 433–460. P. Nevai, Lagrange Interpolation at Zeros of Orthogonal Polynomials, in:Approximation Theory II, G.G. Lorentzet al. (eds.), Academic Press, New York, 1976, pp. 163–201. P. Nevai, Mean Convergence of Lagrange Interpolation II,J. Approx. Theory 30 (1980), pp. 263–276. P. Nevai, Asymptotics for Orthogonal Polynomials Associated with exp(−x4),SIAM J. Math. Anal. 15 (1984), pp. 1177–1187. P. Nevai, Orthogonal Polynomials on Infinite Intervals,Rend Sem. Mat. Univ. Politec. Torino., Fasc. Spec. (1985) pp. 215–236. P. Nevai, Geza Freud, Orthogonal Polynomials and Christoffel Functions: A Case Study,J. Approx. Theory 48 (1986), pp. 3–167. P. Nevai, Research Problems in Orthogonal Polynomials, in:Approximation Theory VI, C. K. Chuiet al. (eds.) Vol.2, Academic Press, New York, 1989, pp. 449–489. P. Nevai,Orthogonal Polynomials: Theory and Practice, NATO ASI Series C294, Kluwer, Dordrecht, 1990. P. Nevai, Orthogonal Polynomials, Recurrences, Jacobi Matrices and Measures, in:Progress in Approximation Theory: An International Perspective, A. A. Gonchar and E. B. Saff (eds.), Springer Series in Computational Maths.9, Springer, New York, 1992, pp. 79–104. P. Nevai and J. S. Dehesa, On Asymptotic Average Properties of Zeros of Orthogonal Polynomials,SIAM J. Math. Anal. 10 (1979), pp. 1184–1192. P. Nevai and V. Totik, Weighted Polynomial Inequalities,Constructive Approximation 2 (1986), pp. 113–127. E. A. Rahmanov, On the Asymptotics of the Ratio of Orthogonal Polynomials II,Math. USSR. Sbornik 46 (1983), pp. 105–117. E. A. Rahmanov, On Asymptotic Properties of Polynomials Orthogonal on the Real Axis,Math. USSR. Sbornik 47 (1984), pp. 155–193. E. A. Rahmanov, On Asymptotic Properties of Polynomials Orthogonal on the Circle with Weights not Satisfying Szegö's Condition,Math. USSR. Sbornik 58 (1987), pp. 149–167. E. A. Rahmanov, Strong Asymptotics for Orthogonal Polynomials with Exponential Weights onR, in:Methods of Approximation Theory in Complex Analysis and Mathematical Physics, Gonchar, A.A. and E.B. Saff (eds.), Nauka, Moscow, 1992, pp. 71–97. E. B. Saff, Incomplete and Orthogonal Polynomials, in:Approximation Theory IV, C. K. Chuiet al. (eds.), Academic Press, New York, 1983, pp. 219–256. E. B. Saff, and V. Totik,Logarithmic Potential with External Fields, Springer-Verlag, in press. R. C. Sheen, Plancherel-Rotach Type Asymptotics for Orthogonal Polynomials Associated with exp(−x6/6),J. Approx. Theory 50 (1987), pp. 232–293. J. A. Shohat, and J. D. Tamarkin,The Problem of Moments, Math. Surveys and Monographs1, Amer. Math. Soc., Providence, R.I., 1943. H. Stahl, and V. Totik,General Orthogonal Polynomials, Encyclopaedia of Mathematics and its Applications43, Cambridge University Press, Cambridge, 1992. G. Szegö,Orthogonal Polynomials, American Mathematical Society Colloquium Publications23, American Mathematical Society, Providence, R.I., 1975, Fourth edition. V. Totik,Weighted Approximation with Varying Weights, Springer Lecture Notes, to appear. J. L. Ullman, Orthogonal Polynomials Associated with an Infinite Interval,Michigan Math. J. 27 (1980), pp. 353–363. J. L. Ullman, On Orthogonal Polynomials Associated with the Infinite Interval, in:Approximation Theory III, Cheney, E.W. (ed.), Academic Press, New York, 1990, pp. 889–895. W. Van Assche, Weighted Zero Distribution for Polynomials Orthogonal on an Infinite Interval,SIAM J. Math. Anal. 16 (1985), pp. 1317–1334. W. Van Assche, The Ratio ofq-like Orthogonal Polynomials,J. Math. Anal. Applns. 128 (1987), pp. 535–547. W. Van Assche,Asymptotics for Orthogonal Polynomials, Springer Lecture Notes in Mathematics1265, Springer, Berlin, 1987. W. Van Assche, Asymptotic Properties of Orthogonal Polynomials from Their Recurrence Formula, II,J. Approx. Theory 52 (1988), pp. 322–338. W. Van Assche, Norm Behaviour and Zero Distribution for Orthogonal Polynomials with Non-Symmetric Weights,Constr. Approx. 5 (1989), pp. 329–345. W. Van Assche, Asymptotics for Orthogonal Polynomials and Three Term Recurrences, in:Orthogonal Polynomials: Theory and Practice, P. Nevai (ed.), NATO ASI Series294, Kluwer, Dordrecht, 1990, pp. 435–462. W. Van Assche, and J. S. Geronimo, Asymptotics for Orthogonal Polynomials with Regularly Varying Recurrence Coefficients,Rocky Mountain J. Math. 19 (1989), pp. 39–49.