An ultrasonographic analysis of the activation patterns of abdominal muscles in children with spastic type cerebral palsy and in typically developing individuals: a comparative study
Tóm tắt
Abdominal muscles have stiffer appearance in individuals with spastic type cerebral palsy (STCP) than in their typically developing (TD) peers. This apparent stiffness has been implicated in pelvic instability, mal-rotation, poor gait and locomotion. This study was aimed at investigating whether abdominal muscles activation patterns from rest to activity differ in the two groups. From ultrasound images, abdominal muscles thickness during the resting and active stages was measured in 63 STCP and 82 TD children. The thickness at each stage and the change in thickness from rest to activity were compared between the two groups. Rectus abdominis (RA) muscle was the thickest muscle at rest as well as in active stage in both groups. At rest, all muscles were significantly thicker in the STCP children (p < 0.001). From rest to active stages muscle thickness significantly increased (p < 0.001) in the TD group and significantly decreased (p < 0.001) in the STCP children, except for RA, which became thicker during activity in both groups. In active stages, no significant differences in the thickness in the four abdominal muscles were found between the STCP and the TD children. Apart from the RA muscle, the activation pattern of abdominal muscles in individuals with STCP differs from that of TD individuals. Further studies required for understanding the activation patterns of abdominal muscles prior to any physical fitness programmes aimed at improving the quality of life in individuals with STCP.
HREC REF: 490/2011
. Human Research Ethics Committee, Faculty of Health Sciences, University of Cape Town, South Africa. November 17, 2011.
Tài liệu tham khảo
Hodges PW, Eriksson AE, Shierley D, Gandevia SC. Intra-abdominal pressure increases stiffness of the lumbar spine. J Biomech. 2005;38(9):1873–80.
Woollacott M, Shunway-Cook A, Hutchinson S, Ciol M, Price R, Kartin D. Effect of balance training on muscle activity used in recovery of stability in children with cerebral palsy: a pilot study. Dev Med Child Neurol. 2005;47:455–61.
Burtner PA, Qualls C, Woollacott MH. Muscle activation characteristics of stance balance control in children with spastic cerebral palsy. Gait Posture. 1998;8:163–74.
Unger M, Faure M, Frieg A. Strength training in adolescent learners with cerebral palsy: a randomized controlled trial. Clin Rehabil. 2006;20:469–77.
Prosser LA, Lee SCK, Barbe MF, VanSant AF, Lauer RT. Trunk and hip muscle activity in early walkers with or without cerebral palsy – a frequency analysis. J Electromyo Kinesiol. 2010;20:851–9.
Roussouly P, Gollogly S, Berthonnaud E, Dimnet J. Classification of the normal variation in the sagittal alignment of human lumbar spine and pelvis in the standing position. Spine. 2005;30:346–53.
Urquhart DM, Hodges PW, Allen TJ, Story IH. Abdominal muscle recruitment during a range of voluntary exercises. Man Ther. 2005;10(2):144–53.
Rose J, McGill KC. Neuromuscular activation and motor-unit firing characteristics in cerebral palsy. Dev Med Child Neurol. 2005;47:329–36.
Ando N, Ueda S. Functional deterioration in adults with cerebral palsy. Clin Rehabil. 2000;14:300–6.
Hungerford B, Gilleard W, Hodges P. Evidence of altered lumbopelvic muscle recruitment in the presence of sacroiliac joint pain. Spine. 2003;28:1593–600.
Stackhouse SK, Binder-Macleod SA, Lee SCK. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve. 2005;31:594–601.
Ferreira PH, Ferreira ML, Hodges PW. Changes in recruitment of abdominal muscles in people with low back pain: ultrasound measurement of muscle activity. Spine. 2004;29:2560–6.
Shortland AP, Harris CA, Gough M, Robinson RO. Architecture of the medial gastrocnemius in children with spastic diplegia. Dev Med Child Neurol. 2002;44:158–63.
Heimdal A, Stoylen A, Torp H, Skaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr. 1998;11:1013–9.
Hodges PW, Pengel LHM, Herbert RD, Gandevia SC. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve. 2003;27:682–92.
Ohata K, TsuboyamaT, Ichihashi N, Minami S. Measurement of muscle thickness as quantitative muscle evaluation for adults with cerebral palsy. Phys Ther. 2009;86:1231–9.
Benard MR, Becher JG, Harlaar J, Huijing PA, Jaspers RT. Anatomical information is needed in ultrasound imaging of muscle to avoid potentially substantial errors in measurement of muscle geometry. Muscle Nerve. 2009;39:652–65.
Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised gross motor function classification system. Dev Med Child Neurol. 2008;50(10):744–50.
Brener ND, McManus T, Galuska DA, Lowry R, Wechsler H. Reliability and validity of self-reported height and weight among high school students. J Adolesc Health. 2003;32:281–7.
Ohata K, Haruta T, Kato T, Nakamura T. Relation between muscle thickness, spasticity, and muscle limitation in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2008;50:152–6.
Vasseljen O, Fladmark AM. Abdominal muscle contraction thickness and function after specific and general exercises: a randomised controlled trial in chronic low back pain patients. Man Ther. 2010;15(5):482–9.
Andersson EA, Grundstrom H, Thorstensson A. Diverging intramuscular activity patterns in back and abdominal muscles during trunk rotation. Spine. 2002;27(6):e152–60.
Gorter JW, Rosenbaum PL, Hanna SE, Palisano RJ, Barlett DJ, Russell DJ, Walter SD, Raina P, Galuppi BE, Wood E. Limb distribution, motor impairment and functional classification of cerebral palsy. Dev Med Child Neurol. 2004;46:461–7.
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobson B. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol. 2007;109(suppl):8–14.