An overview on properties and applications of poly(butylene adipate‐co‐terephthalate)–PBAT based composites

Polymer Engineering and Science - Tập 59 Số s2 - 2019
Filipe V. Ferreira1,2, Luciana De Simone Cividanes3, Rubia F. Gouveia1, Liliane Maria Ferrareso Lona2
1Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
2School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
3Department of Aeronautical and Mechanical Engineering Technological Institute of Aeronautics (ITA) São José dos Campos São Paulo Brazil

Tóm tắt

There is growing interest in biodegradable polymers (BP), in particular poly(butylene adipate‐co‐terephthalate) (PBAT), due to environmental problems associated with the disposal of non‐biodegradable polymers into the environment. However, high production cost and low thermo‐mechanical properties restrict the use of this sustainable material, making its biodegradability advantageous only when it is decisively required. The addition of different compositions of monomers and selective addition of natural fillers have been reported as alternatives to develop more accessible PBAT‐based bioplastics with performance that could match or even exceed that of the most widely used commodity plastics. This review explores the recent progress of the applications and biodegradation of PBAT. The addition of natural fillers and its effect on the final performance of the PBAT‐based composites is also reported with respect to improving the properties of composites. The advance of polymerization reaction engineering combined with sustainable trend offers great opportunities for innovative green chemical manufacturing. POLYM. ENG. SCI., 59:E7–E15, 2019. © 2017 Society of Plastics Engineers

Từ khóa


Tài liệu tham khảo

10.1016/S0266-3538(03)00178-7

10.1038/nmat2614

10.1038/nmat1368

10.1016/j.solmat.2008.10.004

F. V.Ferreira L. D. S.Cividanes F. S.Brito B. R. C.deMenezes W.Franceschi E. A.Nunes Simonetti andG. P.Thim Functionalizing Graphene and Carbon Nanotubes Springer International Publishing Cham (2016).

10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W

10.1021/acssuschemeng.5b01327

10.1016/j.marpol.2015.10.014

10.1016/j.marpolbul.2016.03.040

10.1016/j.scitotenv.2016.05.041

10.1038/ncomms15611

10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X

10.1016/j.tifs.2008.07.003

10.1016/j.biomaterials.2006.01.039

10.1002/anie.200460587

10.1021/cr900339w

10.1016/j.mattod.2013.06.004

10.1021/bm0493685

10.1007/s002530100732

10.1016/S1381-5148(00)00038-9

10.1021/es049972n

10.1023/A:1021013921916

10.1016/j.carbpol.2011.11.012

10.1016/j.msec.2015.10.075

10.1016/S0142-9418(01)00107-6

10.1126/science.297.5582.803

10.1016/j.compositesb.2017.07.088

10.1016/j.colsurfb.2017.04.053

10.1039/C6RA00889E

10.3390/ma2020307

10.1007/BF02763591

10.1016/S0168-1656(00)00407-7

10.1002/polb.23490

10.1080/15421401003722955

10.1007/s10924-013-0578-y

10.1007/s10570-016-1143-3

10.1016/j.compscitech.2014.10.005

10.1016/j.compositesa.2015.10.041

F.V.Ferreira L.D.S.Cividanes F.S.Brito B.R.C.deMenezes W.Franceschi E.A.N.Simonetti andG.P.Thim Functionalizing Graphene and Carbon Nanotubes Springer International Publishing 2016 pp.31–61.

Ferreira F.V., Polym. Compos.

10.1021/am300783d

10.1088/2053-1591/aa8d31

10.1016/j.scitotenv.2016.05.084

10.1016/j.progpolymsci.2007.05.017

10.1016/j.progpolymsci.2013.05.006

10.1016/S0025-326X(02)00220-5

L.Avérous andE.Pollet Environmental Silicate Nano‐Biocomposites (Green Energy and Technology) Springer‐Verlag London 13 (2012).

10.1016/S0079-6700(01)00039-9

10.1002/cjoc.200790292

10.1007/BF02068676

10.1039/C5PY00686D

10.3390/ijms15057064

10.1016/j.progpolymsci.2008.10.002

10.1016/j.indcrop.2012.05.042

10.1016/j.msec.2012.04.005

10.1002/mame.200700352

10.1002/pola.10501

10.1002/(SICI)1097-0126(199909)48:9<861::AID-PI233>3.0.CO;2-9

10.1016/j.biortech.2010.05.092

10.3390/polym2040728

10.1007/s10570-011-9543-x

10.1016/S0008-6223(03)00387-7

10.1016/j.jiec.2014.03.022

10.1016/j.carbon.2006.02.038

10.1016/j.compscitech.2011.05.009

10.1039/C3CS60204D

10.1016/j.apsusc.2015.09.202

10.1007/978-3-319-35110-0

10.1016/j.eurpolymj.2015.06.007

10.1021/acs.langmuir.6b03220

10.1002/polb.24139

10.1002/pat.1995.220060514

10.1002/app.43678

10.1016/j.clay.2013.04.015

10.1002/app.21333

10.1007/s10570-014-0387-z

10.1002/app.20426

10.1016/j.carbpol.2013.11.047

Liu L., 2015, Polym. Compos.

10.1016/j.indcrop.2012.08.031

10.1002/app.44498

10.1016/j.eurpolymj.2017.10.026

10.1016/j.compositesa.2015.10.038

10.1007/s00289-015-1594-y

10.1016/j.msec.2014.10.045

10.1002/polb.21129

10.1002/app.32619

10.1016/j.carbpol.2010.10.047

10.1016/j.apsusc.2016.07.164

10.1016/S1002-0071(12)60086-0

10.1002/polb.23729

10.1002/app.41607

10.1016/j.apsusc.2017.03.098

10.1016/j.compositesb.2006.04.003

Ferreira F.V., 2017, Fullerenes Nanotubes Carbon Nanostruct.

10.5028/jatm.v7i3.485

10.1021/acssuschemeng.6b02633

10.1002/pen.24367

10.1007/s10924-014-0687-2

N.SabaandM.Jawaid Cellulose Nanofibre Composite. Elsevier 89 (2017).

10.1016/j.msec.2015.09.023

10.1016/j.polymdegradstab.2015.03.007

10.1016/j.polymdegradstab.2015.06.009

10.3390/nano7100297

10.1002/app.40079

10.1002/pc.22344

La Mantia F.P., Polym. Degrad. Stab.

10.1016/j.biotechadv.2007.12.005

10.1016/S0045-6535(00)00162-4

10.1016/S0141-3910(03)00274-X

10.1002/(SICI)1097-0126(199905)48:5<346::AID-PI156>3.0.CO;2-N

10.1016/S0141-3910(97)00186-9

10.1016/S0014-3057(00)00057-4

10.1007/s10924-011-0408-z

10.1002/app.24174

Mohanty S., 2009, Polym. Compos.

ASTM Standard D5988‐12 American Society for Testing and Materials Philadelphia PA (2012).

10.1111/j.1365-2389.2008.01052_2.x

10.1016/j.trac.2009.06.007

10.1016/j.polymdegradstab.2012.06.028

10.1016/j.chemosphere.2008.06.064

10.1016/j.trac.2009.09.005

D.Witzke Introduction to Properties Engineering and Prospects of Polylactide Polymers Michigan State University (1997).