An iterative thresholding algorithm for linear inverse problems with a sparsity constraint

Communications on Pure and Applied Mathematics - Tập 57 Số 11 - Trang 1413-1457 - 2004
Miguel R. D. Rodrigues1, Michel Defrise2, Christine De Mol3
1Department of Mathematics, U. of Princeton
2Vrije Universiteit Brussel,
3Université libre de Bruxelles

Tóm tắt

Abstract

We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary preassigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted 𝓁p‐penalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem. Use of such 𝓁p‐penalized problems with p < 2 is often advocated when one expects the underlying ideal noiseless solution to have a sparse expansion with respect to the basis under consideration. To compute the corresponding regularized solutions, we analyze an iterative algorithm that amounts to a Landweber iteration with thresholding (or nonlinear shrinkage) applied at each iteration step. We prove that this algorithm converges in norm. © 2004 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

10.1093/biomet/85.1.115

Bertero M., 1989, 1

10.1887/0750304359

Bertero M., 1996, 129, 10.1016/S0079-6638(08)70314-7

10.1002/cpa.3160440202

10.1214/aos/1028674842

10.1109/83.661182

10.1137/S003614450037906X

Cohen A., 2000, 417, 10.1016/S1570-8659(00)07004-6

Cohen A., Adaptive wavelet Galerkin methods for linear inverse problems, SIAM J Numer Anal

10.1090/conm/313/05370

10.1109/42.370409

DeVore R. A., 1998, Acta numerica, 1998, 51

10.1515/jiip.1996.4.3.203

10.1137/0523074

10.1109/18.382009

10.1006/acha.1995.1008

10.1137/S0036141098344403

10.1093/biomet/81.3.425

Donoho D. L., 1995, Wavelet shrinkage: asymptopia?, J Roy Statist Soc Ser B, 57, 301

10.1090/S0002-9947-1952-0047179-6

10.1080/01630569208816489

10.1007/978-94-009-1740-8

10.1109/TIP.2003.814255

10.2307/2005354

10.1002/0471221317

10.1109/TIP.2003.810592

10.2307/2372313

10.2307/1390605

10.1109/83.892445

10.1088/0031-9155/47/15/303

Louis A. K., 1997, Wavelets: theory and applications

Mallat S., 1999, A wavelet tour of signal processing

10.1111/j.1749-6632.1988.tb32998.x

Nowak R.;Figueiredo M.Fast wavelet‐based image deconvolution using the EM algorithm.Proceedings of the 35th Asilomar Conference on Signals Systems and Computers (Monterey CA Nov. 4–7 2001) vol. 1 371–375.

10.1090/S0002-9904-1967-11761-0

10.2307/1390659

10.1051/0004-6361:20021571

10.1016/S0165-1684(03)00150-6

Tibshirani R., 1996, Regression shrinkage and selection via the lasso, J Roy Statist Soc Ser B, 58, 267