An investigation of the efficacy and mechanism of contrast-enhanced X-ray Computed Tomography utilizing iodine for large specimens through experimental and simulation approaches

BMC Physiology - Tập 15 Số 1 - 2015
Zhiheng Li1, Julia A. Clarke1, Richard A. Ketcham1, Matthew W. Colbert1, Fei Yan2
1Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA
2Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9(1):11.

Metscher BD. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn. 2009;238(3):632–40.

Metscher BD. X-ray microtomographic imaging of vertebrate embryos. In: James S, Wong RO, Rafael Y, editors. Imaging in Developmental Biology: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2011. p. 1462–71.

Metscher BD, Müller GB. MicroCT for molecular imaging: Quantitative visualization of complete three-dimensional distributions of gene products in embryonic limbs. Dev Dyn. 2011;240(10):2301–8.

Jeffery NS, Stephenson RS, Gallagher JA, Jarvis JC, Cox PG. Micro-computed tomography with iodine staining resolves the arrangement of muscle fibres. J Biomech. 2011;44(1):189–92.

Tahara R, Larsson HC. Quantitative analysis of microscopic X-ray computed tomography imaging: Japanese quail embryonic soft tissues with iodine staining. J Anat. 2013;223(3):297–310.

Staedler YM, Masson D, Schönenberger J. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging. PloS one. 2013;8(9):e75295.

Stephenson RS, Boyett MR, Hart G, Nikolaidou T, Cai X, Corno AF, et al. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PloS one. 2012;7(4):e35299–9.

Gignac PM, Kley NJ. Iodine-enhanced micro-CT imaging: Methodological refinements for the study of the soft‐tissue anatomy of post-embryonic vertebrates. J ExpZool B Mol Dev Evol. 2014;22(3):166–76.

Faulwetter S, Vasileiadou A, Kouratoras M, Dailianis T, Arvanitidis C. Micro-computed tomography: Introducing new dimensions to taxonomy. ZooKeys. 2013;263:1–45.

Ritman EL. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng. 2011;13:531–52.

Vickerton P, Jarvis J, Jeffery N. Concentration-dependent specimen shrinkage in iodine-enhanced microCT. J Anat. 2013;223(2):185–93.

Tsai HP, Holliday CM. Ontogeny of the Alligator cartilago transiliens and its significance for sauropsid jaw muscle evolution. PloS One. 2011;6(9):e24935.

Lecker DN, Kumari S, Khan A. Iodine binding capacity and iodine binding energy of glycogen. J Polymer Sci Polymer Chem. 1997;35(8):1409–12.

Degenhardt K, Wright AC, Horng D, Padmanabhan A, Epstein JA. Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ Cardiovasc Imag. 2010;3(3):314–22.

Palumbo G, Zullo F. The use of iodine staining for the quantitative analysis of lipids separated by thin layer chromatography. Lipids. 1987;22(3):201–5.

Shackelford CD, Daniel DE. Diffusion in saturated soil. I: Background. J Geotech Engrg. 1991;117(3):467–84.

Weber Jr WJ, McGinley PM, Katz LE. Sorption processes and their effects on contaminant fate and transport in subsurface systems. Water Res. 1991;25(5):499–528.

Kumari S, Roman A, Khan A. Chromophore and spectrum of the glycogen–iodine complex. J Polymer Sci Polymer Chem. 1996;34(14):2975–80.

Davis H, Skrzypek W, Khan A. Iodine binding by amylopectin and stability of the amylopectin–iodine complex. J Polymer Sci Polymer Chem. 1994;32(12):2267–74.

Archibald A, Fleming I, Liddle AM, Manners D, Mercer G, Wright A. α-1, 4-Glucosans. Part XI. The absorption spectra of glycogen–and amylopectin–iodine complexes. J Am ChemSoc (Resumed). 1961;232:1183–90.

Szejtli J, Richter M, Augustat S. Molecular configuration of amylose and its complexes in aqueous solutions. Part II. Relation between the DP of helical segments of the amylose–iodine complex and the equilibrium concentration of free iodine. Biopolymers. 1967;5(1):5–16.

Weber WJ, LeBoeuf EJ, Young TM, Huang W. Contaminant interactions with geosorbent organic matter: insights drawn from polymer sciences. Water Res. 2001;35(4):853–68.

Berens A, Hopfenberg H. Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer. 1978;19(5):489–96.

Maeda K, Yamashiro M, Michi Y, Suzuki T, Ohyama Y, Okada N, et al. Effective staining method with iodine for leukoplakia and lesions surrounding squamous cell carcinomas of the tongue assessed by colorimetric analysis. J Med Dent Sci. 2009;56(4):123–30.

Li Z, Clarke JA: The craniolingual morphology of waterfowl (Aves, anseriformes) and its relationship with feeding mode revealed through contrast-enhanced X-ray computed tomography and 2D morphometrics. Evol Biol. In press.

Katsevich A. An improved exact filtered back projection algorithm for spiral computed tomography. Adv Appl Math. 2004;32(4):681–97.

Chindasombatjaroen J, Kakimoto N, Shimamoto H, Murakami S, Furukawa S. Correlation between pixel values in a cone-beam computed tomographic scanner and the computed tomographic values in a multidetector row computed tomographic scanner. J Comput Assist Tomogr. 2011;35(5):662–5.

Takanami K, Higano S, Takase K, Kaneta T, Yamada T, Ishiya H, et al. Validation of the use of calibration factors between the iodine concentration and the computed tomography number measured outside the objects for estimation of iodine concentration inside the objects: phantom experiment. Radiat Med. 2008;26(4):237–43.

Crank J: The mathematics of diffusion, 2nd edn. Oxford: Oxford university press; 1975.

Urbanchek MG, Picken EB, Kalliainen LK, Kuzon WM. Specific force deficit in skeletal muscles of old rats is partially explained by the existence of denervated muscle fibers. J Gerontol A BiolSci Med Sci. 2001;56(5):B191–7.