An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance
Tóm tắt
Abstract. This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.
Từ khóa
Tài liệu tham khảo
Anderson, M. C., Norman, J. M., Kustas, W. P., Houborg, R., Starks, P. J., and Agam, N.: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales, Remote Sens. Environ., 112, 4227–4241, https://doi.org/10.1016/j.rse.2008.07.009, 2008.
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol., 212–213, 198–212, https://doi.org/10.1016/S0022-1694(98)00253-4, 1998.
Berk, A., Anderson, G. P., Acharya, P. K., Chetwynd, J. H., Bernstein, L. S., Shettle, E. P., Matthew, M. W., and Adler-Golden, S. M.: MODTRAN4 USER'S MANUAL, Air Force Research Laboratory, Space Vehicles Directorate, Air Force Materiel Command, Hanscom AFB, MA 01731-3010, 97 pp., 2000.
Bhumralkar, C. M.: Numerical Experiments on the Computation of Ground Surface Temperature in an Atmospheric General Circulation Model, J. Appl. Meteorol., 14, 1246–1258, 1975.
Buschmann, C.: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves, Photosynth. Res., 92, 261–271, https://doi.org/10.1007/s11120-007-9187-8, 2007
Carter, G. A. and Knapp, A. K.: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration, Am. J. Bot., 88, 677–684, 2001.
CEOS: The Earth Observation Handbook – Climate change special edition 2008 (ESA SP-1315), edited by: Bond, P., ESA Communications Production Office, Noordwijk, The Netherlands, 2008.
Collatz, G., Ribas-Carbo, M., and Berry, J. A.: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants, Aus. J. Plant Physiol., 19, 519–538, 1992.
Entcheva Campbell, P. K., Middleton, E. M., Corp, L. A., and Kim, M. S.: Contribution of chlorophyll fluorescence to the apparent vegetation reflectance, Sci. Total Environ., 404, 433–439, https://doi.org/10.1016/j.scitotenv.2007.11.004, 2008.
Farquhar, G., Von Caemmerer, S., and Berry, J.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Genty, B., Birantais, J., and Baker, N.: The relationship between the quantum efficiencies of photosystems I and II in pea leaves, Biochem. Biophys. Acta, 990, 87–92, 1989.
Goudriaan, J.: Crop micrometerology: a simulation study, PUDOC, Wageningen, 249 pp., 1977.
Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesela, T., Falge, E. M., and Dowty, P. R.: Advantages of diffuse radiation for terrestrial ecosystem productivity, J. Geophys. Res., 107(D6), 4050, https://doi.org/10.1029/2001JD001242, 2002.
Guilioni, L., Jones, H. G., Leinonen, I., and Lhomme, J.-P.: On the relationships between stomatal resistance and leaf temperatures in thermography, Agr. Forest Meteorol., 148, 1908–1912, https://doi.org/10.1016/j.agrformet.2008.07.009, 2008.
Hall, F. G., Huemmrich, K. F., Goetz, S. J., Sellers, P. J., and Nickeson, J. E.: Satellite remote sensing of surface energy balance: success, failures, and unresolved issues in FIFE, J. Geophys. Res., 97(D17), 19061–19089, 1992.
Houldcroft, C.: Measuring and modeling the surface temperature and structure of a maize canopy, Ph.D. thesis, The University of Reading, UK, 235 pp., 2004.
Jacquemoud, S. and Baret, F.: PROSPECT: A model of leaf optical properties spectra, Remote Sens. Environ., 34, 75–91, 1990.
Jacquemoud, S., Bacour, C., Poilvé, H., and Frangi, J.-P.: Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode, Remote Sens. Environ., 74, 471–481, 2000.
Kull, O. and Kruyt, B.: Acclimation of photosynthesis to light: a mechanistic approach, Funct. Ecol., 13(1), 24–36, 1998.
Kustas, W. P., Anderson, M. C., French, A. N., and Vickers, D.: Using a remote sensing field experiment to investigate flux-footprint relations and flux sampling distributions for tower and aircraft-based observations, Adv. Water Resour., 29, 355–368, https://doi.org/10.1016/j.advwatres.2005.05.003, 2006.
Kustas, W. P., Anderson, M. C., Norman, J. M., and Li, F.: Utility of radiometric-aerodynamic temperature relations for heat flux estimation, Bound.-Lay. Meteorol., 122, 167–187, 2007.
Lloyd, J. and Farquhar, G.: 13C discrimination during CO2 assimilation by the terrestrial biosphere, Oecologia, 99, 201–215, 1994.
Mäkelä, A., Hari, P., Berninger, F., Hänninen, H., and Nikinmaa, E.: Acclimation of photosyn-thetic capacity in Scots pine to the annual cycle of temperature, Tree Physiol., 24, 369–376, 2004.
Miller, J., Berger, M., Goulas, Y., Jacquemoud, S., Louis, J., Mohammed, G., Moise, N., Moreno, J., Moya, I., Pedrós, R., Verhoef, W., and Zarco-Tejada, P.: Development of a Vegetation Fluorescence Canopy Model, ESTEC Contract No. 16365/02/NL/FF, Final Report, 138 pp., 2005.
Nikolov, N. T., Massman, W. J., and Schoettle, A. W.: Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C3 plants, Ecol. Model., 80, 205–235, https://doi.org/10.1016/0304-3800(94)00072-P, 1995.
Norman, J. M.: Modeling the complete crop canopy, in: Modification of the aerial environment of plants, edited by: Barfield, B. J. and Gerber, J. F., ASAE Monogr. Am. Soc. Agric. Engr., St. Joseph, MI, 249–277, 1979.
Norman, J. N. and Becker, F.: Terminology in thermal infrared remote sensing of natural surfaces, Agr. Forest Meteorol., 77, 153–166, https://doi.org/10.1016/0168-1923(95)02259-Z, 1995.
Rascher, U., Gioli, B., and Miglietta, F.: FLEX – Fluorescence Explorer: A Remote Sensing Approach to Quantify Spatio-Temporal Variations of Photosynthetic Efficiency from Space, in: "Photosynthesis. Energy from the Sun, 14th International Congress on Photosynthesis", edited by: Allen, J. F., Gantt, E., Golbeck, J. H., and Osmond, B., Springer, Netherlands, 2008.
Reich, P. B., Ellsworth, D. S., Walters, M. B., Vose, J. M., Gresham, C., Volin, J. C., and Bowman, W. D.: Generality of leaf trait relationships: a test across six biomes, Ecology, 80, 1955–1969, 1999.
Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A., Hall, F., Berry, J., Collatz, G., Denning, A., Mooney, H., Nobre, C., Sato, N., Field, C., and Henderson-Sellers, A.: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science, 275(5299), 502–509, 1997.
Smolander, H. and Stenberg, P.: A method to account for shoot scale clumping in coniferous canopy reflectance models, Remote Sens. Environ., 88, 363–373, https://doi.org/10.1016/j.rse.2003.06.003, 2003.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, 2002.
Su, Z., Timmermans, W. J., Gieske, A., Jia, L., Elbers, J. A., Olioso, A., Timmermans, J., Van der Velde, R., Jin, X.,Van der Kwast, H., Nerry, F., Sabol, D., Sobrino, J. A., Moreno, J., and Bianchi, R.: Quantification of land-atmosphere exchanges of water, energy and carbon dioxide in space and time over the heterogeneous Barrax site, Int. J. Remote Sens., 29(17), 5215–5235, 2008.
Timmermans, J., Van der Tol, C., Verhoef, W., and Su, Z.: Contact and directional radiative temperature measurements of sunlit and shaded land surface components during the SEN2FLEX 2005 campaign, Int. J. Remote Sens., 29(17–18), 5183–5192, 2008.
Tuzet, A., Perrier, A., and Leuning, R.: A coupled model of stomatal conductance, photo-synthesis and transpiration, Plant Cell Environ., 26, 1097–1116, 2003.
Van der Tol, C., Verhoef, W., and Rosema, A.: A model for chlorophyll fluorescence and photosynthesis at leaf scale, Agr. Forest Meteorol., 149(1), 96–105, 2009.
Verhoef, W.: Light scattering by leaves with application to canopy reflectance modelling: the SAIL model, Remote Sens. Environ., 16, 125–178, 1984.
Verhoef, W.: Theory of radiative transfer models applied in optical remote sensing of vegetation canopies, Ph.D. thesis, Wageningen Agricultural University, 1998.
Verhoef, A. and Allen, S. J.: A SVAT scheme describing energy and CO2 fluxes for multi-component vegetation: calibration and test for a Sahelian savannah, Ecol Model., 127, 245–267, 2000.
Verhoef, W. and Bach, H.: Remote sensing data assimilation using coupled radiative transfer models, Phys. Chem. Earth Pt. A/B/C, 28, 3–13, 2003.
Verhoef, W. and Bach, H.: Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data, Remote Sens. Environ., 109(2), 166–182, 2007.
Verhoef, W., Jia, L., Xiao, Q., and Su, Z.: Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. IEEE T. Geosci. Remote, 45(6), 1808–1822, 2007.
Von Caemmerer, S. and Baker, N.: The biology of transpiration: from guard cells to globe, Plant Physiol., 143, 3 pp, 2007.
Wallace, J. S. and Verhoef, A.: Modelling interactions in mixed-plant communities: light, water and carbon dioxide, in: Leaf Development and Canopy Growth, edited by: Marshall, B. and Roberts, J. A., Sheffield Academic Press, UK, 2000.