An integrated linkage map of interspecific backcross 2 (BC2) populations reveals QTLs associated with fatty acid composition and vegetative parameters influencing compactness in oil palm

Zulkifli Yaakub1, Katialisa Kamaruddin1, Rajinder Singh1, Suzana Mustafa1, Marhalil Marjuni1, Ngoot‐Chin Ting1, Mohd Din Amiruddin1, Low Eng Ti Leslie1, Ooi Leslie Cheng-Li1, Kandha Sritharan2, N. Rajanaidu1, J. Jansen3, Meilina Ong‐Abdullah1
1Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
2United Plantations Bhd, Jendarata Estate, 36009, Teluk Intan, Perak, Malaysia
3Wageningen University and Research Centre, P.O. Box 100, Wageningen, 6700 AC, The Netherlands

Tóm tắt

Abstract Background Molecular breeding has opened new avenues for crop improvement with the potential for faster progress. As oil palm is the major producer of vegetable oil in the world, its improvement, such as developing compact planting materials and altering its oils’ fatty acid composition for wider application, is important. Results This study sought to identify the QTLs associated with fatty acid composition and vegetative traits for compactness in the crop. It integrated two interspecific backcross two (BC2) mapping populations to improve the genetic resolution and evaluate the consistency of the QTLs identified. A total 1963 markers (1814 SNPs and 149 SSRs) spanning a total map length of 1793 cM were integrated into a consensus map. For the first time, some QTLs associated with vegetative parameters and carotene content were identified in interspecific hybrids, apart from those associated with fatty acid composition. The analysis identified 8, 3 and 8 genomic loci significantly associated with fatty acids, carotene content and compactness, respectively. Conclusions Major genomic region influencing the traits for compactness and fatty acid composition was identified in the same chromosomal region in the two populations using two methods for QTL detection. Several significant loci influencing compactness, carotene content and FAC were common to both populations, while others were specific to particular genetic backgrounds. It is hoped that the QTLs identified will be useful tools for marker-assisted selection and accelerate the identification of desirable genotypes for breeding.

Từ khóa


Tài liệu tham khảo

Oil World. 2017. http://www.oilworld.biz/app.php. Accessed 11 Feb 2019.

Kushairi A, Soh KH, Azman I, Elina H, Meilina OA, Zanal Bidin MNI, Razmah G, Shamala S, Ahmad Parveez GK. Oil palm economic performance in Malaysia and R&D progress in 2017. J Oil Palm Res. 2018;30(2):163–95.

USDA. Malaysia: stagnating palm oil yields impede growth. Commodity intelligence report. 2012. http://www.pecad.fas.usda.gov/highlights/2012/12/Malaysia. Accessed 28 Feb 2019.

Sharma M, Tan YP. Oil palm breeding programme and the performance of DxP planting materials at United Plantation Bhd. In: Proceedings of seminar on sourcing of oil palm planting materials for local and overseas join venture. Malaysia: PORIM; 1999. p. 118–35.

Kushairi A, Rajanaidu N, Jalani BS, Mohd Rafii Y, Mohd Din A. PORIM oil palm planting materials. PORIM Bull. 1999;38:1–13.

Barcelos E, Rios SA, Cunha RNV, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S. Oil palm natural diversity and the potential for yield improvement. Front Plant Sci. 2015;6:190.

Jagoe RB. Deli oil palms and early introductions of Elaeis guineensis to Malaya. Malay Agric J. 1952;3:4–11.

Rajanaidu N, Jalani BS. Oil palm genetic resources – collection, evaluation, utilization and conservation. PORIM Colloquium on Oil Palm Genetic Resources. Bangi: PORIM; 1994.

Bilal M, Veerappan P, Nazeeb M. Evaluation of Deli Nigerian DxT and Avros-Nigerian TxT crosses in Sime Darby Plantations. In: Rajanaidu N, Jalani BS, editors. Proc. seminar on PS1 and PS2 in oil palm planting materials. Kuala Lumpur: Palm Oil Research Institute of Malaysia; 1999. p. 54–64.

Pootakham W, Jomchai N, Ruang-Areerate P, Shearman JR, Sonthirod C, Sangsrakru D, Tragoonrung S, Thangphatsornruang S. Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics. 2015;105:288–95.

Lee M, Xia JH, Zou Z, Ye J, Rahmadsyah, Alfiko Y, Jin J, Lieando JV, Purnamasari MI, Lim CH, Suwanto A, Wong L, Chua NH, Yue GH. A consensus linkage map of oil palm and a major QTL for stem height. Sci Rep. 2015;5:8232.

Ong PW, Maizura I, Marhalil M, Rajanaidu N, Abdullah NAP, Rafii MY, Ooi LCL, Low ETL, Singh R. Association of SNP markers with height increment in MPOB-Angolan natural oil palm populations. J Oil Palm Res. 2018;30(1):61–70.

Kushairi A, Mohd Din A, Rajanaidu N. Oil palm breeding and seed production. In: Mohd Basri W, Choo YM, Chan KW, editors. Further advances in oil palm research (2000–2010). Bangi: MPOB; 2011. p. 47–101.

Singh R, Tan SG, Panandam JM, Rahimah AR, Ooi LCL. Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm. BMC Plant Biol. 2009;9:114.

Billotte N, Jourjon MF, Marseillac N, Berger A, Flori A, Asmady H, Adon B, Singh R, Nouy B, Potier F, Cheah SC, Rohde W, Ritter E, Courtois B, Charrier A, Mangin B. QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet. 2010;120:1673–87.

Montoya C, Lopes R, Flori A, Cros D, Cuellar T, Summo M, Espeout S, Rivallan R, Risterucci AM, Bittencourt D, Zambrano JR, Alarcon GWH, Villeneuve P, Pina M, Nouy B, Amblard P, Ritter E, Leroy T, Billote N. Quantitative trait loci (QTLs) analysis of oil palm fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (H.B.K.) Cortes and oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes. 2013;9:1207–25.

Ting NC, Jansen J, Mayes S, Massawe F, Sambanthamurthi R, Ooi RCL, Chin CW, Arulandoo X, Seng TY, Syed-Alwee SSR, Ithnin M, Singh R. High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genomics. 2014;15:309.

Rance KA, Mayes S, Price Z, Jack PL, Corley RHV. Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet. 2001;103:1302–10.

Jeennor S, Volkaert H. Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (Elaeis guineensis Jacq.). Tree Genet Genomics. 2014;10:1–14.

Ting NC, Zulkifli Y, Katialisa K, Mayes S, Massawe F, Ravigadevi S, Jansen J, Maizura I, Kushairi A, Xaviar A, Rozana R, Chan KL, Nadzirah A, Kandha S, Lim CC, Rajanaidu N, Mohd Din A, Rajinder S. Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm. BMC Genomics. 2016;17:289.

Escobar R, Alvarado A. Strategies in production of oil palm seed varieties and clones for high density planting. ASD Oil Palm Pap (Costa Rica). 2004;27:1–12.

Zulkifli Y, Norziha A, Naqiuddin MH, Fadila AM, Nor Azwani AB, Suzana M, Samsul KR, Ong-Abdullah M, Singh R, Ahmad Parveez GK, Kushairi A. Designing the oil palm of the future. J. Oil Palm Res. 2017;29:440–55.

Escobar R, Alvarado A, Chinchilla C, Guzman N, Peralta F. Performance of ASD de Costa Rica oil palm planting materials: seeds and compact clones. Proceedings of Seminar on Sourcing of Oil Palm Planting Materials for Local and Overseas Joint Ventures. Kuala Lumpur: ASGARD; 2006. p. 1–12.

Sterling F, Richardson DL, Chavez C. Some phenotypic characteristics of the descendants of ‘QB49: 238’, and exceptional hybrid of oil palm. In: International oil palm/palm oil conference-agriculture proceedings. Malaysia: PORIM; 1988. p. 94–102.

Alvarado A, Escobar R, Peralta R, Chinchilla C. Compact seeds and clones and their potential for high density planting. Proceedings of International ISOPB Seminar on Yield Potential in The Oil Palm. Thailand: MPOB; 2006. p.10.

Cadena T, Prada F, Perea A, Romero H. Lipase activity, mesocarp oil content, and iodine value in oil palm fruits of Elaeis guineensis, Elaeis oleifera,and the interspecific hybrid OxG (E. oleifera x E. guineensis). J Sci Food Agric. 2012;93(3):674–80.

Noh A, Rafii MY, Saleh G, Kushairi A, Latif MA. Genetic performance and general combining ability of oil palm Deli dura x AVROS pisifera tested on inland soils. ScientificWorldJournal. 2012;2012:792601.

Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, Ooi LC, Ooi SE, Chan KL, Halim MA, Azizi N, Nagappan J, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, DeSalle R, Kudrna D, Goicoechea JL, Wing RA, Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature. 2013;500:335–9.

Soh AC. Selecting the ideal oil palm: what you see is not necessarily what you get. J Oil Palm Res. 2004;16(2):121–8.

Soh AC, Lee CH, Yong YY, Chin CW, Tan YP, Rajanaidu N, Phuah PK. The precision of oil palm breeding experiments in Malaysia. In Applications of statistics to perennial tree crops. Proceedings of Workshop on Applications of Statistics to Perennial Tree Crops. Kuala Lumpur: PORIM; 1989. p. 41–50.

Meunier J, Boulin D. Elaeis melanococca and E. melanococca × E. guineensis hybrids. First results. Oleagineux. 1975;30:5–8.

Montoya C, Cochard B, Flori A, Cros D, Lopes R, Cuellar T, Espeout S, Syaputra I, Villeneuve P, Pina M, Ritter E, Leroy T, Billotte N. Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortes. PLoS One. 2014;9:e95412.

King AJ, Montes LR, Clark JG, Itzep J, Pere CA, Jongschaap RE, Visser RG, van Loo EN, Graham IA. Identification of QTL markers contributing to plant growth, oil yield and fatty acid composition in the oilseed crop Jatropha curcas L. Biotechnol Biofuels. 2015;8(1):160.

Ohlrogge JB, Jaworski JG. Regulation of fatty acid synthesis. Annu Rev Plant Biol. 1997;48(1):109–36.

Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM. Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet. 2005;111:1260–70.

Li XM, Quigg RJ, Zhou J, Xu SZ, Masinde G, Mohan S, Baylink DJ. A critical evaluation of the effect of population size and phenotypic measurement on QTL detection and localization using a large F2 murine mapping population. Genet Mol Biol. 2006;29:166–73.

Maria M, Clyde MM, Cheah SC. Cytological analysis of Elaeis guineensis (tenera) chromosomes. Elaeis. 1995;7:122–34.

Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King CJ. Aligning male and female linkage maps of apple (Malus pumilla Mill.) using multi-allelic markers. Theor Appl Genet. 1998;97:60–73.

Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol. 2014;14(1):33.

Rajanaidu N, Kushairi A, Mohd Din A. Utilization of germplasm. In: Monograph oil palm genetic resources. Bangi: MPOB; 2017.

Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL. Identification of QTL for sugar-related traits in a sweet x grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed. 2008;22:367–84.

Kang ST, Kwak M, Kim HK, Choung MG, Han WY, Baek IY, Kim MY, Van K, Lee SH. Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L.) Merr.]. Euphytica. 2009;166:15–24.

Würschum T. Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet. 2012;125:201–10.

Mba OI, Dumont MJ, Ngadi M. Palm oil: processing, characterization and utilization in the food industry-a review. Food Biosci. 2015;10:26–41.

Mohd Din A, Rajanaidu N, Kushairi A, Mohd Rafii Y, Mohd Isa ZA, Noh A. PS4: high carotene E. oleifera planting materials, MPOB information series no. 137. Bangi: MPOB; 2012.

Campbell R, Pont SD, Morris JA, McKenzie, Sharma SK, Hedley PE, Ramsay G, Bryan GJ, Taylor MA. Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.). Theor Appl Genet. 2014;127(9):1917–33.

Noh A, Rajanaidu N, Kushairi A, Mohd R, Mohd D, Mohd I, Saleh G. Variability in fatty acids composition, iodine value and carotene content in the MPOB oil palm germplasm collection from Angola. J Oil Palm Res. 2002;14(2):18–23.

Noiret JM, Wuidart W. Possibilities for improving the fatty acid composition of palm oil. Results and prospects. Oleagineux. 1976;31(11):465–74.

Ollagnier M, Olivin J. Effects of nutrition on yield. Genetic progress and effects of nutrition on the quality of palm oil. Oléagineux. 1984;39(8/9):401–7.

Xiao Y, Tong H, Yang X, Xu S, Pan Q, Qiao F, Raihan MS, Luo Y, Liu H, Zhang X, Yang N, Wang, Deng M, Jin M, Zhao L, Luo X, Zhou Y, Li X, Liu J, Zhan W, Liu N, Wang H, Chen G, Cai Y, Xu G, Wang W, Zheng D, Yan J. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytol. 2016;210(3):1095–106.

Amiruddin M, Nookiah R, Sukaimi J, Hamid ZA. Genetic variation and heritability estimates for bunch yield, bunch components and vegetative traits in oil palm interspecific hybrids. J Agric Sci Technol A. 2015;5:162–73.

Hardon JJ, Rao V, Rajanaidu N. A review of oil palm breeding. In: Rusell GE, editor. Progress in plant breeding. United Kingdom: Butterworths; 1985. p. 139–63.

Orr AH. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution. 1998;52:935–49.

Hurme P, Sillanpää MJ, Arjas E, Repo T, Savolainen O. Genetic basis of climatic adaptation in Scot pine by Bayesian quantitative trait locus analysis. Genetics. 2000;156:1309–22.

Kumar J, Choudhary AK, Solanki RK, Pratap A. 2011. Towards marker-assisted selection in pulses: a review. Plant Breed. 2011;130(3):297–313.

Raghavan C, Collard BCY. Effect of small mapping population sizes on reliability of quantitative trait locus (QTL) mapping. Afr J Biotechnol. 2012;11:10661–74.

Beavis WD. QTL analyses: power, precision, and accuracy. Molecular dissection of complex traits; 1998. p. 145–62.

Muranthy H. Power of test for quantitative trait loci detection using full-sibs families in different schemes. Heredity. 1996;76:156–65.

Collard BC, Jahufer MZZ, Brouwer JB, Pang ECK. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica. 2005;142(1–2):169–96.

Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J. BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev. 2000;15:1985–97.

Li HM, Altschmied L, Chory J. Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes Dev. 1994;8:339–49.

Sponsel VM, Schmidt FW, Porter SG, Nakayama M, Kohlstruk S, Estelle M. Characterization of new gibberellin-responsive semidwarf mutants of arabidopsis. Plant Physiol. 1997;115:1009–20.

Deyoung BJ, Clark SE. BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics. 2008;180:895–904.

Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell. 1996;8:735–46.

Blacklock BJ, Jaworski JG. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem Biophys Res Commun. 2006;346:583–90.

Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA. Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol. 2008;26(3):139–45.

Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD. Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet. 2008;117(8):1345–59.

Alvarado A, Henry J. Evolution blue: a new oil palm variety with reduced growth and high oil content. ASD oil palm papers; 2015. p. 45.

Murphy DJ. Plant breeding and biotechnology: societal context and the future of agriculture. Cambridge: Cambridge University Press; 2007.

Isa ZA, Mohd Din A, Maizura I, Noh A, Kushairi A, Rajanaidu N. PS12: breeding population for high oleic acid palm oil, MPOB information series no. 313. Bangi: MPOB; 2006.

Parveez GKA, Abrizah O, Tarmizi HA, Zamzuri I, Kushairi DA, Salmah Y, Bahariah B, Sabariah K. Transformation of oil palm with antisense palmitoyl-ACP thioesterase gene for increasing oleic acid content. In: Proc. of the PIPOC 2003 international palm oil congress – agriculture conference; 2003. p. 869–78.

Henderson W, Tjeuw J, Purba O, Immanuella H. Oil palm block efficiency indicator. Sci Res J. 2014;2:1–4.

Breure CJ, Powell MS. The one-shot method of establishing growth parameters in oil palm. In: Proceedings of 1987 Int. oil palm conference agriculture. Malaysia: PORIM; 1988.

Tailliez B, Koffi CB. A method for measuring oil palm leaf area. Oleaginieux. 1992;47:537–45.

PORIM. PORIM test method. In: Methods of test for palm oil and palm oil products. Bandar Baru Bangi: Palm Oil Research Institute Malaysia (PORIM); 1995.

Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant Mol Biol Rep. 1983;1:19–21.

Katialisa K, Ithnin M, Ooi LCL, Ting NC, Musa B, Singh R. Construction of SNP- and SSR-based genetic linkage map in the oil palm backcross two (BC2) mapping population. Proceedings of the 2013 PIPOC International Palm oil Congress. Kuala Lumpur: MPOB; 2013. p.158.

Zulkifli Y, Rajinder S, Mohd Din A, Ting NC, Rajanaidu N, Kushairi A, Musa B, Mohamad O, Ismanizan I. Inheritance of SSR and SNP loci in an oil palm interspecific hybrid backcross (BC2) population. J Oil Palm Res. 2014;26:203–13.

Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics. 1994;137(4):1121–37.

Van Ooijen JW. JoinMap® 4.1. Software for calculation of genetic linkage maps in experimental populations. Wageningen: Kyazma B.V.; 2011.

Jansen J. Construction of linkage maps in full-sib families of diploid outbreeding species by minimizing the number of recombinations in hidden inheritance vectors. Genetics. 2005;170(4):2013–25.

VSN International. Genstat for Windows 18th edition. Hemel Hempstead: VSN International; 2015.

Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity. 2005;95:221–7.

Van Ooijen JW. MapQTL® 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen: Kyazma B.V.; 2009.