An influence model for influence maximization–revenue optimization
Tóm tắt
The rise of online social networks (OSNs) has caused an insurmountable amount of interest from advertisers and researchers seeking to monopolize on its features. Researchers aim to develop strategies for propagating information among users within an OSN that is captured by diffusion or influence models. Within the last decade, influence models have been extensively studied for the influence maximization (IM) problem. Recently, a novel stochastic dynamic programming (SDP) formulation to influence maximization called the influence maximization–revenue optimization (IM–RO) problem was proposed with numerous lucrative advantages. In this paper, we validate the intuition behind the proposed influence model for the IM–RO problem empirically. We focus on demonstrating the correctness of the notion behind the influence model that the more of a user’s friends who click on an advertisement, the more likely the user is to click on the advertisement themselves and use a decision tree regressor to predict this probability. To further support the premise of our influence model and estimate its parameters, we implement a linear regression and a Bayesian model. Results indicate that the linear regression model captures the functional relationship between its dependent and the independent variables. We extend the experiments to real-world OSNs and investigate additional predictor variables that influence the number of posts and reposts.
Tài liệu tham khảo
Abbassi, Z., Bhaskara, A., Misra, V.: Optimizing display advertising in online social networks. In: Proceedings of the 24th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, WWW ’15, pp 1–11,
https://doi.org/10.1145/2736277.2741648
, (2015)
citation_journal_title=PVLDB; citation_title=Viral marketing meets social advertising: Ad allocation with minimum regret; citation_author=C Aslay, W Lu, F Bonchi, A Goyal, L Lakshmanan; citation_volume=8; citation_issue=7; citation_publication_date=2015; citation_pages=822-899; citation_doi=10.14778/2752939.2752950; citation_id=CR2
citation_journal_title=PVLDB; citation_title=Revenue maximization in incentivized social advertising; citation_author=C Aslay, F Bonchi, L Lakshmanan, W Lu; citation_volume=10; citation_issue=11; citation_publication_date=2017; citation_pages=1238-1249; citation_doi=10.14778/3137628.3137635; citation_id=CR3
Bhagat, S., Goyal, A., Lakshmanan, L.V.: Maximizing product adoption in social networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, ACM, New York, NY, USA, WSDM ’12, pp 603–612,
https://doi.org/10.1145/2124295.2124368
, (2012)
citation_title=Classification and Regression Trees; citation_publication_date=1984; citation_id=CR5; citation_author=L Breiman; citation_author=J Friedman; citation_author=R Olshen; citation_author=C Stone; citation_publisher=CRC Press
citation_title=Active learning of model parameters for influence maximization; citation_inbook_title=Machine Learning and Knowledge Discovery in Databases; citation_publication_date=2011; citation_pages=280-295; citation_id=CR6; citation_author=T Cao; citation_author=X Wu; citation_author=TX Hu; citation_author=S Wang; citation_publisher=Springer, Berlin Heidelberg, Berlin
Chakrabarti, S., Dom, B., Indyk, P.: Active learning of model parameters for influence maximization. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, ACM, pp 307–318 (1998)
citation_journal_title=Journal of Automation and Computing; citation_title=Study on information diffusion analysis in social networks and its applications international; citation_author=B Chang, T Xu, Q Liu, EH Chen; citation_volume=15; citation_publication_date=2018; citation_pages=377-512; citation_doi=10.1007/s11633-018-1124-0; citation_id=CR8
Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’10, pp 1029–1038,
https://doi.org/10.1145/1835804.1835934
(2010)
Chen, W., Collins, A., Cummings, R., Ke, T., Liu, Z., Rincon, D., Sun, X., Wei, W., Wang, Y., Yuan, Y.: Influence maximization in social networks when negative opinions may emerge and propagate. In: Proceedings of the 2011 SIAM International Conference on Data Mining (SDM’2011), pp 379–390,
https://doi.org/10.1137/1.9781611972818.33
(2011)
Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the 7th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, pp 57–66,
https://doi.org/10.1145/502512.502525
(2001)
Dua, D., Graff, C.M.: Machine learning repository, uci. “
http://archive.ics.uci.edu/ml
” (2017)
citation_journal_title=The Annals of Statistics; citation_title=Bootstrap methods: Another look at the jackknife; citation_author=B Efron; citation_volume=7; citation_publication_date=1979; citation_pages=1-26; citation_doi=10.1214/aos/1176344552; citation_id=CR13
Galhotra, S., Arora, A., Roy, S.: Holistic influence maximization: Combining scalability and efficiency with opinion-aware models. In: Proceedings of the 2016 International Conference on Management of Data, pp 743–758 (2016)
citation_title=Markov Chain Monte Carlo in Practice; citation_publication_date=1996; citation_id=CR15; citation_author=W Gilks; citation_author=S Richardson; citation_author=D Spiegelhalter; citation_publisher=Chapman and Hall/CRC
Goyal, A., Bonchi, F., Lakshmanan, V.: Learning influence probabilities in social networks. In: Proceedings of the ACM international Conference on Web search and Data mining, ACM, pp 241–250 (2010)
He, X., Kempe, D.: Stability of influence maximization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’14, pp 1256–1265,
https://doi.org/10.1145/2623330.2623746
, (2014)
Hosein, P., Lawrence, T.: Stochastic dynamic programming model for revenue optimization in social networks. 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) pp 378–383 (2015)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’03, pp 137–146,
https://doi.org/10.1145/956750.956769
, (2003)
Khan, A., Benjamin, Z., Kossmann, D.: Revenue maximization by viral marketing: A social network hosts perspective. 2016 IEEE 32nd International Conference on Data Engineering (ICDE) pp 37–48,
https://doi.org/10.1109/ICDE.2016.7498227
(2016)
Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking links in a network. In: Proceedings of the 23rd National Conference on Artificial Intelligence, AAAI Press, AAAI’08, pp 1175–1180,
http://dl.acm.org/citation.cfm?id=1620163.1620255
(2008)
Kimura, M., Saito, K., Kea, Ohara: Speeding up node influence computation for huge social networks. Int J Data Sci Anal 1:3–16,
https://doi.org/10.1007/s41060-015-0001-y
(2016)
Kuhnle, A., Alim, A., Li, X., Zhang, H.: Multiplex influence maximization in online social networks with heterogeneous diffusion models. In IEEE Transactions on Computational Social Systems 5:418–429,
https://doi.org/10.1109/TCSS.2018.2813262
(2018)
citation_journal_title=Int J Data Sci Anal; citation_title=Stochastic dynamic programming heuristics for influence maximization- revenue optimization; citation_author=T Lawrence, P Hosein; citation_volume=8; citation_publication_date=2018; citation_pages=1-14; citation_doi=10.1007/s41060-018-0155-5; citation_id=CR24
Leskovec, J., Krevl, A.: Snap datasets: stanford large network dataset collection. In: SNAP Datasets: Stanford Large Network Dataset Collection,
http://snap.stanford.edu/data
(2014)
citation_journal_title=Int J Data Sci Anal; citation_title=Colloquial region discovery for retail products: discovery and application; citation_author=S Mishra, L Vincent, S Amer-Yahia; citation_volume=4; citation_publication_date=2017; citation_pages=17-34; citation_doi=10.1007/s41060-017-0048-z; citation_id=CR26
Nesi, P., Pantaleo, G., Paoli, I., Zaza, I.: Assessing the retweet proneness of tweets: predictive models for retweeting. Multimed Tools Appl pp 26371–26396 (2018)
citation_journal_title=Int J Data Sci Anal; citation_title=Resampling-based predictive simulation framework of stochastic diffusion model for identifying top-k influential nodes; citation_author=K Ohara, K Saito, Kimura Mea; citation_volume=9; citation_publication_date=2020; citation_pages=175-194; citation_doi=10.1007/s41060-019-00183-3; citation_id=CR28
Rahaman, I., Hosein, P.: On the problem of multi-staged impression allocation in online social networks. Machine Learning Techniques for Online Social Networks pp 65–84,
https://doi.org/10.1007/978-3-319-89932-9_4
(2018)
Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’02, pp 61–70,
https://doi.org/10.1145/775047.775057
(2002)
Saito K, Nakano R, Kimura M (2008) Prediction of information diffusion probabilities for independent cascade model. In: Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, vol 5179, pp 65–75,
https://doi.org/10.1007/978-3-540-85567-5_9
Twitter (2016) Twitter reports third quarter 2015 results.
https://investor.twitterinc.com/financial-information/quarterly-results
Wang, W., Nick, Street W.: Modeling and maximizing influence diffusion in social networks for viral marketing. Appl Netw Sci 3(6),
https://doi.org/10.1007/s41109-018-0062-7
(2018)
Zhang, J., Liu, B., Tang, J., Chen, T., Li, J.: Social influence locality for modeling retweeting behaviors. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, ACM (2013)