Sự gia tăng phosphatidylcholine trong dịch nang trứng chỉ ra sự giảm chất lượng phôi vào ngày thứ 3 sau thụ tinh
Tóm tắt
Mặc dù chất lượng noãn là yếu tố hàng đầu quyết định chất lượng phôi, nhưng chỉ có một số ít nghiên cứu được thực hiện để đánh giá chất lượng phôi dựa trên các hợp chất chuyển hóa liên quan đến noãn. Với việc định lượng các hợp chất chuyển hóa trong dịch nang trứng (FF), nghiên cứu này nhằm mục đích đánh giá chất lượng phôi hoặc noãn thông qua một phương pháp mang tính thông tin trong công nghệ sinh sản hỗ trợ (ART).
Một mô hình đánh giá bao gồm 17 đặc điểm đã được xây dựng để phân biệt chất lượng phôi vào ngày thứ 3 sau thụ tinh, và phosphatidylcholine (PC) là những yếu tố chính đóng góp vào đánh giá này. Mô hình được mở rộng cho các bệnh nhân ở các độ tuổi khác nhau và được siêu kích thích khác nhau, và các đặc điểm được làm giàu thêm để tạo điều kiện thuận lợi cho việc đánh giá chất lượng phôi. Các hợp chất chuyển hóa đã được nhóm lại thông qua phân tích con đường, dẫn đến giả thuyết rằng sự tích tụ của axit arachidonic được gây ra bởi PCs có thể làm giảm chất lượng phôi vào ngày thứ 3 sau thụ tinh.
Một mô hình phân biệt với các đặc điểm chuyển hóa được thu thập từ dịch nang trứng đã được thiết lập, cho phép đánh giá chất lượng phôi hoặc noãn ngay cả trong một số điều kiện lâm sàng nhất định, và sự gia tăng của PCs trong dịch nang trứng ám chỉ sự suy giảm chất lượng phôi vào ngày thứ 3 sau thụ tinh.
Từ khóa
Tài liệu tham khảo
Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med. 2008;14(11):1197–213. https://doi.org/10.1038/nm.f.1895.
Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012;9:1–12.
Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3(4):367–82. https://doi.org/10.1093/humupd/3.4.367.
Hardy AK, Spanos S, Becker D, Iannelli P, Winston RML, Stark J, et al. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. PNAS. 2016;98:1655–60.
Keefe D, Kumar M, Kalmbach K. Oocyte competency is the key to embryo potential. Fertil Steril. 2015;103(2):317–22. https://doi.org/10.1016/j.fertnstert.2014.12.115.
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018;24(3):245–66. https://doi.org/10.1093/humupd/dmx040.
Lu X, Gao Z, Qin D, Li L. A maternal functional module in the mammalian oocyte-to-embryo transition. Trends Mol Med. 2017;23(11):1014–23. https://doi.org/10.1016/j.molmed.2017.09.004.
Balaban B, Urman B. Effect of oocyte morphology on embryo development and implantation. Reprod. Biomed. Online. 2006;12(5):608–15. https://doi.org/10.1016/S1472-6483(10)61187-X.
De Neubourg D, Gerris J, Mangelschots K, Van Royen E, Vercruyssen M, Elseviers M. Single top quality embryo transfer as a model for prediction of early pregnancy outcome. Hum Reprod. 2004;19(6):1476–9. https://doi.org/10.1093/humrep/deh283.
Erenus M, Zouves C, Rajamahendran P, Leung S, Fluker M, Gomel V. The effect of embryo quality on subsequent pregnancy rates after in vitro fertilization. Fertil Steril. 1991;56(4):707–10. https://doi.org/10.1016/S0015-0282(16)54603-2.
Fortune JE. Ovarian follicular growth and development in mammals. Biol Reprod. 1994;50(2):225–32. https://doi.org/10.1095/biolreprod50.2.225.
Da Broi MG, Giorgi VSI, Wang F, Keefe DL, Albertini D, Navarro PA. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. J Assist Reprod Genet. 2018;35(5):735–51. https://doi.org/10.1007/s10815-018-1143-3.
Basuino L, Silveira CF. Human follicular fluid and effects on reproduction. JBRA Assist Reprod. 2016;20(1):38–40. https://doi.org/10.5935/1518-0557.20160009.
Revelli A, Piane LD, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7:1–13.
Atiomo W, Khalid S, Parameshweran S, Houda M, Layfield R. Proteomic biomarkers for the diagnosis and risk stratification of polycystic ovary syndrome: a systematic review. BJOG An Int J Obstet Gynaecol. 2009;116(2):137–43. https://doi.org/10.1111/j.1471-0528.2008.02041.x.
Estes SJ, Ye B, Qiu W, Cramer D, Hornstein MD, Missmer SA. A proteomic analysis of IVF follicular fluid in women ≤32 years old. Fertil Steril. 2009;92(5):1569–78. https://doi.org/10.1016/j.fertnstert.2008.08.120.
Jarkovska K, Martinkova J, Liskova L, Haiada P, Moos J, Rezabek K, et al. Proteome mining of human follicular fluid reveals a crucial role of complement cascade and key biological pathways in women undergoing in vitro fertilization. J Proteome Res. 2010;9(3):1289–301. https://doi.org/10.1021/pr900802u.
Booth PJ, Humpherson PG, Watson TJ, Leese HJ. Amino acid depletion and appearance during porcine preimplantation embryo development in vitro. Reproduction. 2005;130(5):655–68. https://doi.org/10.1530/rep.1.00727.
D’Aniello G, Grieco N, Di Filippo MA, Cappiello F, Topo E, D’Aniello E, et al. Reproductive implication of D-aspartic acid in human pre-ovulatory follicular fluid. Hum Reprod. 2007;22(12):3178–83. https://doi.org/10.1093/humrep/dem328.
Jeremy JY, Okonofua FE, Thomas M, Wojdyla J, Smith W, Craft IL, et al. Oocyte maturity and human follicular fluid prostanoids, gonadotropins, and prolactin after administration of clomiphene and pergonal. J Clin Endocrinol Metab. 1987;65(3):402–6. https://doi.org/10.1210/jcem-65-3-402.
Lee M, Ben-Rafael Z, Meloni F, Mastroianni L, Flickinger GL. Relationship of human oocyte maturity, fertilization, and cleavage to follicular fluid prolactin and steroids. J Vitr Fertil Embryo Transf. 1987;4(3):168–72. https://doi.org/10.1007/BF01555465.
Messinis LE, Templeton AA. Relationship between intrafollicular levels of prolactin and sex steroids and in-vitro fertilization of human oocytes. Hum Reprod. 1987;2(7):607–9. https://doi.org/10.1093/oxfordjournals.humrep.a136598.
Botero-Ruiz W, Laufer N, DeCherney AH. The relationship between follicular fluid steroid concentration and successful fertilization of human oocyte in vitro. Fertil Steril. 1984;41(6):820–6. https://doi.org/10.1016/S0015-0282(16)47892-1.
Aleyasin A, Hosseini MA, Mahdavi A, Safdarian L, Fallahi P, Mohajeri MR, et al. Predictive value of the level of vitamin D in follicular fluid on the outcome of assisted reproductive technology. Eur J Obstet Gynecol Reprod Biol. 2011;159(1):132–7. https://doi.org/10.1016/j.ejogrb.2011.07.006.
Anifandis GM, Dafopoulos K, Messini CI, Chalvatzas N, Liakos N, Pournaras S, et al. Prognostic value of follicular fluid 25-OH vitamin D and glucose levels in the IVF outcome. Reprod Biol Endocrinol. 2010;8:1–5.
Whaley SL, Hedgpeth VS, Farin CE, Martus NS, Jayes FCL, Britt JH. Influence of vitamin A injection before mating on oocyte development, follicular hormones, and ovulation in gilts fed high-energy diets. J Anim Sci. 2000;78(6):1598–607. https://doi.org/10.2527/2000.7861598x.
Yang X, Wu LL, Chura LR, Liang X, Lane M, Norman RJ, et al. Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus-oocyte complexes. Fertil Steril. 2012;97(6):1438–43. https://doi.org/10.1016/j.fertnstert.2012.02.034.
Leroy JLMR, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, et al. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130(4):485–95. https://doi.org/10.1530/rep.1.00735.
Nandi S, Girish Kumar V, Manjunatha BM, Ramesh HS, Gupta PSP. Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells. Theriogenology. 2008;69(2):186–96. https://doi.org/10.1016/j.theriogenology.2007.08.036.
Chiu TTY, Rogers MS, Law ELK, Briton-Jones CM, Cheung LP, Haines CJ. Follicular fluid and serum concentrations of myo-inositol in patients undergoing IVF: relationship with oocyte quality. Hum Reprod. 2002;17(6):1591–6. https://doi.org/10.1093/humrep/17.6.1591.
Saito H, Kaneko T, Takahashi T, Kawachiya S, Saito T, Hiroi M. Hyaluronan in follicular fluids and fertilization of oocytes. Fertil Steril. 2000;74(6):1148–52. https://doi.org/10.1016/S0015-0282(00)01586-7.
Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP, Deigner HP. Targeted metabolomics for biomarker discovery. Angew Chemie - Int Ed. 2010;49(32):5426–45. https://doi.org/10.1002/anie.200905579.
Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88(1):524–45. https://doi.org/10.1021/acs.analchem.5b04491.
Zhou J, Yin Y. Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst. 2016;141(23):6362–73. https://doi.org/10.1039/C6AN01753C.
Singh R, Sinclair KD. Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology. 2007;68:56–62.
Botros L, Sakkas D, Seli E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol. Hum. Reprod. 2008;14(12):679–90. https://doi.org/10.1093/molehr/gan066.
Sudano MJ, Santos VG, Tata A, Ferreira CR, Paschoal DM, Machado R, et al. Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Biol Reprod. 2012;87:1–11.
Haarpaintner G, Scherb H, Vouk K, Hevir N, Ribic M, Osredkar J, et al. Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis. Hum. Reprod. 2012;27:2955–65.
O’Gorman A, Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, et al. Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction. 2013;146(4):389–95. https://doi.org/10.1530/REP-13-0184.
Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction. 2010;139(6):979–88. https://doi.org/10.1530/REP-09-0503.
Cordeiro FB, Montani DA, Pilau EJ, Gozzo FC, Fraietta R, Lo TEG. Ovarian environment aging: follicular fluid lipidomic and related metabolic pathways. J Assist Reprod Genet. 2018;35(8):1385–93. https://doi.org/10.1007/s10815-018-1259-5.
Chen Z, Wu Y, Nagano M, Ueshiba K, Furukawa E, Yamamoto Y, et al. Lipidomic profiling of dairy cattle oocytes by high performance liquid chromatography-high resolution tandem mass spectrometry for developmental competence markers. Theriogenology. 2020;144:56–66. https://doi.org/10.1016/j.theriogenology.2019.11.039.
Montani DA, Braga DP de AF, Borges E, Camargo M, Cordeiro FB, Pilau EJ, et al. Understanding mechanisms of oocyte development by follicular fluid lipidomics. J Assist Reprod Genet. 2019;36(5):1003–11. https://doi.org/10.1007/s10815-019-01428-7.
Singer WD, Brown HA, Sternweis PC. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem. 1997;66(1):475–509. https://doi.org/10.1146/annurev.biochem.66.1.475.
Adibhatla RM, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies. BMB Rep. 2008;41(8):560.
Masoudi Asil S, Abedian Kenari A, Rahimi Miyanji G, Van Der Kraak G. The influence of dietary arachidonic acid on growth, reproductive performance, and fatty acid composition of ovary, egg and larvae in an anabantid model fish, Blue gourami (Trichopodus trichopterus; Pallas, 1770). Aquaculture. 2017;476:8–18. https://doi.org/10.1016/j.aquaculture.2017.03.048.
Nuttinck F, Reinaud P, Tricoire H, Vigneron C, Peynot N, Mialot JP, et al. Cyclooxygenase-2 is expressed by cumulus cells during oocyte maturation in cattle. Mol Reprod Dev. 2002;61(1):93–101. https://doi.org/10.1002/mrd.1135.
Jin Y, Tan TQ, Zhang C. Effect of Arachidonic acid on production of laminin and connexin of granulosa cells from chicken pre-hierarchical follicles. Asian-Australasian J Anim Sci. 2009;22(3):350–5. https://doi.org/10.5713/ajas.2009.80381.
Oh JS, Han SJ, Conti M. Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. J Cell Biol. 2010;188(2):199–207. https://doi.org/10.1083/jcb.200907161.
Prates EG, Alves SP, Marques CC, Baptista MC, Horta AEM, Bessa RJB, et al. Fatty acid composition of porcine cumulus oocyte complexes (COC) during maturation: effect of the lipid modulators trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) and forskolin. Vitr Cell Dev Biol - Anim. 2013;49(5):335–45. https://doi.org/10.1007/s11626-013-9624-2.
Li Q, Jimenez-Krassel F, Ireland JJ, Smith GW. Gene expression profiling of bovine preovulatory follicles: gonadotropin surge and prostanoid-dependent up-regulation of genes potentially linked to the ovulatory process. Reproduction. 2009;137(2):297–307. https://doi.org/10.1530/REP-08-0308.
Ciepiela P, Bączkowski T, Drozd A, Kazienko A, Stachowska E, Kurzawa R. Arachidonic and linoleic acid derivatives impact oocyte ICSI fertilization - a prospective analysis of follicular fluid and a matched oocyte in a “one follicle - one retrieved oocyte - one resulting embryo” investigational setting. PLoS One. 2015;10:1–14.
Puissant F, Van Rysselberge M, Barlow P, Deweze J, Leroy F. Embryo scoring as a prognostic tool in IVF treatment. Hum Reprod. 1987;2(8):705–8. https://doi.org/10.1093/oxfordjournals.humrep.a136618.
Schiffman C, Petrick L, Perttula K, Yano Y, Carlsson H, Metayer C, et al. Filtering procedures for untargeted LC-MS metabolomics data. BMC Bioinform. 2019;20(1):1–10.