An improved deep hashing model for image retrieval with binary code similarities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdalla HB. A brief survey on big data: technologies, terminologies and data-intensive applications. J Big Data. 2022;9(1):107.
Biswas S, Khare N, Agrawal P, Jain P. Machine learning concepts for correlated big data privacy. J Big Data. 2021;8(1):157.
Senoguchi J. Forecast of complex financial big data using model tree optimized by bilevel evolution strategy. J Big Data. 2021;8(1):116.
Seliya N, Zadeh AA, Khoshgoftaar TM. A literature review on one-class classification and its potential applications in big data. J Big Data. 2021;8(1):122.
Liu H, Li X, Zhang S, Tian Q. Adaptive hashing with sparse matrix factorization. IEEE Trans Neural Net Learn Syst. 2020;31(10):4318–29.
Wang J, Zhang T, Song J, Sebe N, Shen HT. A survey on learning to hash. IEEE Trans Pattern Anal Mach Intell. 2018;40(4):769–90.
Jafari O, Maurya P, Nagarkar P, Islam K.M, Crushev C. A survey on locality sensitive hashing algorithms and their applications. CoRR abs/2102.08942, 2021;1–23.
Gong Y, Lazebnik S, Gordo A, Perronnin F. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans Pattern Anal Mach Intelli. 2013;35(12):2916–29.
Subakti A, Murfi H, Hariadi N. The performance of BERT as data representation of text clustering. J Big Data. 2022;9(1):15.
Alzubaidi L, Bai J, Al-Sabaawi A, Santamaria J, Albahri AS, Al-dabbagh BSN, Fadhel MA, Manoufali M, Zhang J, Al-Timemy AH, Duan Y, Abdullah A, Farhan L, Lu Y, Gupta A, Albu F, Abbosh A, Gu Y. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J Big Data. 2023;10:46.
Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili AQ, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):53.
Kaur G, Sharma A. A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis. J Big Data. 2023;10(1):5.
Naik D, Jaidhar CD. Semantic context driven language descriptions of videos using deep neural network. J Big Data. 2022;9(1):17.
Singh A, Gupta S. Learning to hash: a comprehensive survey of deep learning-based hashing methods. Knowl Inf Syst. 2022;64(10):2565–97.
Xia R, Pan Y, Lai H, Liu C, Yan S. Supervised hashing for image retrieval via image representation learning. In: Proc. the 28th AAAI Conf. Artifi Intell (AAAI’14), pp. 2156–2162, 2014.
Li W-J, Wang S, Kang W-C. Feature learning based deep supervised hashing with pairwise labels. In: Proc. the 25th Int. Joint Conf. Artifi Intelli (IJCAI’16), pp. 1711–1717, 2016.
Zhu H, Long M, Wang J, Cao Y. Deep hashing network for efficient similarity retrieval. In: Proc. the 30th AAAI Conf. Artifi Intell (AAAI’16), pp. 2415–2421, 2016.
Qin Q, Huang L, Wei Z, Nie J, Xie K, Hou J. Unsupervised deep quadruplet hashing with isometric quantization for image retrieval. Inf Sci. 2021;567:116–30.
Sun Y, Ye Y, Li X, Feng S, Zhang B, Kang J, Dai K. Unsupervised deep hashing through learning soft pseudo label for remote sensing image retrieval. Knowl Based Syst. 2022;239: 107807.
Weiss Y, Torralba A, Fergus R. Spectral hashing. In: Proc. the 21nd Int. Conf. Neural Info. Processing Syst. (NIPS’08), pp. 1753–1760, 2008.
Liu W, Wang J, Ji R, Jiang Y-G, Chang S-F. Supervised hashing with kernels. In: Proc. IEEE Conf. Comp. Vision Pattern Recogn. (CVPR’12), pp. 2074–2081, 2012.
Lin G, Shen C, Qinfeng S, Hengel A, David S. Fast supervised hashing with decision trees for high-dimensional data. In: Proc. IEEE Conf. Comp. Vision Pattern Recogn. (CVPR’14), pp. 1971–1978, 2014.
Xiao Y, Zhang W, Dai X, Dai X, Zhang N. Robust supervised discrete hashing. Neurocomputing. 2022;483:398–410.
Cao Y, Long M, Wang J, Zhu H, Wen Q. Deep quantization network for efficient image retrieval. In: Proc. the 30th AAAI Conf. Artifi. Intelli. (AAAI’16), pp. 3457–3463, 2016.
Luo X, Ma Z, Cheng W, Deng M. Improve deep unsupervised hashing via structural and intrinsic similarity learning. IEEE Signal Process Lett. 2022;29:602–6.
Cui Q, Chen Z-M, Yoshie O. Delving into the representation learning of deep hashing. Neurocomputing. 2022;494:67–78.
Wu D, Dai Q, Li B, Wang W. Deep uncoupled discrete hashing via similarity matrix decomposition. ACM Trans Mult Comp Comm Appl. 2023;19(1):22.
Wang X, Shi Y, Kitani KM. Deep supervised hashing with triplet labels. In: Proc. the 13th Asian Conf. Computer Vision (ACCV’16), pp. 70–84, 2016.
Jiang Q-Y, Cui X, Li W-J. Deep discrete supervised hashing. IEEE Trans Image Process. 2018;27(12):5996–6009.
Zhang Z, Zhu L, Li Y, Xu Y. Deep discrete hashing for label distribution learning. IEEE Signal Process Lett. 2022;29:832–6.
Li X, Yu J, Wang Y, Chen J-Y, Chang P-X, Li Z. DAHP: deep attention-guided hashing with pairwise labels. IEEE Trans Circ Syst Video Tech. 2022;32(3):933–46.
Hu W, Wu L, Jian M, Chen Y, Yu H. Cosine metric supervised deep hashing with balanced similarity. Neurocomputing. 2021;448:94–105.
Sun Y, Ye Y, Li X, Feng S, Zhang B, Kang J, Dai K. Unsupervised deep hashing through learning soft pseudo label for remote sensing image retrieval. Knowl Based Syst. 2022;239: 107807.
Liu H, Yin M, Wu Z, Zhao L, Li Q, Zhu X, Zheng Z. PLDH: pseudo-labels based deep hashing. Mathematics. 2023;11:2175.