An extension of assumed stress finite elements to a general hyperelastic framework

Springer Science and Business Media LLC - Tập 6 - Trang 1-22 - 2019
Nils Viebahn1, Jörg Schröder1, Peter Wriggers2
1Institute of Mechanics, Faculty of Engineering, University Duisburg-Essen, Essen, Germany
2Institute of Continuum Mechanics, Leibniz Universität Hannover, Hannover, Germany

Tóm tắt

Assumed stress finite elements are known for their extraordinary good performance in the framework of linear elasticity. In this contribution we propose a mixed variational formulation of the Hellinger–Reissner type for hyperelasticity. A family of hexahedral shaped elements is considered with a classical trilinear interpolation of the displacements and different piecewise discontinuous interpolation schemes for the stresses. The performance and stability of the new elements are investigated and demonstrated by the analysis of several benchmark problems. In addition the results are compared to well known enhanced assumed strain elements.

Tài liệu tham khảo

Adams S, Cockburn B. A mixed finite element method for elasticity in three dimensions. J Sci Comput. 2005;25(3):515–21. Andelfinger U, Ramm E. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int J Numer Methods Eng. 1993;36:1311–37. Arnold DN, Falk RS, Winther R. Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math Comp. 2007;76:1699–723. Arnold DN, Winther R. Nonconforming mixed elements for elasticity. Math Models Methods Appl Sci. 2003;13:295–307. Arnold DN, Brezzi F, Douglas J. PEERS: a new mixed finite element for plane elasticity. Jpn J Appl Math. 1984a;1:347–67. Arnold DN, Douglas J, Gupta C. A family of higher order mixed finite element methods for plane elasticity. Numerische Mathematik. 1984b;45:1–22. Arnold DN, Awanou G, Winther R. Finite elements for symmetric tensors in three dimensions. Math. Comp. 2008;77:1229–51. Atluri SN. On the hybrid stress finite element model in incremental analysis of large deflection problems. Int J Solids Struct. 1973;9:1188–91. Atluri SN, Murakawa H. On hybrid finite element models in nonlinear solid mechanics. Finite Elements Nonlinear Mech. 1977;1:3–41. Auricchio F, Brezzi F, Lovadina C. Mixed finite element methods. In: Stein E, de Borst R, Hughes TJR, editors. Encyclopedia of computational mechanics. Hoboken: Wiley; 2004. p. 238–77. Babuška I. The finite element method with Lagrangian multipliers. Numerische Mathematik. 1973;20(3):179–92. Babuška I, Suri M. Locking effects in the finite element approximation of elasticity problems. Numerische Mathematik. 1992;62(1):439–63. Bathe KJ. Finite element procedures. New Jersey: Prentice Hall; 1996. Bathe KJ. The inf-sup condition and its evaluation for mixed finite element methods. Comput Struct. 2001;79:243–52. Bazeley GP, Cheung YK, Irons BM, Zienkiewicz OC. Triangular elements in plate bending. conforming and nonconforming solutions. In: 1st conf. matrix methods in structural mechanics. 1966; p. 547–576. Bischoff M, Ramm E, Braess D. A class of equivalent enhanced assumed strain and hybrid stress finite elements. Comput Mech. 1999;22:443–9. Boehler JP. A simple derivation of respresentations for non-polynomial constitutive equations in some cases of anisotropy. Zeitschrift für angewandte Mathematik und Mechanik. 1979;59:157–67. Boffi D, Brezzi F, Fortin M. Reduced symmetry elements in linear elasticity. Commun Pure Appl Anal. 2009;8:95–121. Boffi D, Brezzi F, Fortin M. Mixed finite element methods and applications. Heidelberg: Springer; 2013. Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d’automatique informatique recherche opérationnelle. Analyse numérique. 1974;8(2):129–51. Brezzi F, Fortin M. Mixed and hybrid finite element methods. New York: Springer-Verlag; 1991. Chapelle D, Bathe K. The inf-sup test. Comput Struct. 1993;47:537–45. Chun KS, Kassenge SK, Park WT. Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions. Struct Eng Mech. 2008;29:643–58. Ciarlet PG. Mathematical elasticity: three dimensional elasticity, vol. 1. North Holland: Elsevier Science Publishers B.V.; 1988. Cockburn B, Gopalakrishnan J, Guzmán J. A new elasticity element made for enforcing weak stress symmetry. Math Comp. 2010;79:1331–49. de Souza Neto EA, Peric D, Huang GC, Owen DRJ. Remarks on the stability of enhanced strain elements in finite elasticity and elastoplasticity. Commun Numer Methods Eng. 1995;11(11):951–61. de Veubeke B Fraeijs. Displacement and equilibrium models in the finite element method. In: Zienkiewicz OC, Holister GC, editors. Stress analysis. Hoboken: Wiley; 1965. Galerkin BG. Series solution of some problems in elastic equilibrium of rods and plates. Vestn Inzh Tech. 1915;19:897–908. Hellinger E. Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, vol 4, chapter Die allgemeine Ansätze der Mechanik der Kontinua. 1914. Hu H-C. On some variational methods on the theory of elasticity and the theory of plasticity. Scientia Sinica. 1955;4:33–54. Johnson C, Mercier B. Some equilibrium finite element methods for two-dimensional elasticity problems. Numerische Mathematik. 1978;30:85–99. Klaas O, Schröder J, Stein E, Miehe C. A regularized dual mixed element for plane elasticity—implementation and performance of the BDM element. Comput Methods Appl Mech Eng. 1995;121:201–9. Korelc J, Solinc U, Wriggers P. An improved EAS brick element for finite deformation. Comput Mech. 2010;46:641–59. Krischok A, Linder C. On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids. Int J Numer Methods Eng. 2016;106:278–97. Ladyzhenskaya O. The mathematical theory of viscous incompressible flow, vol. 76. New York: Gordon and Breach; 1969. Li B, Xie X, Zhang S. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Dis Continuous Dyn Syst Ser B. 2017;22(7):2831–56. Lonsing M, Verfürth R. On the stability of BDMS and PEERS elements. Numer Math. 2004;99:131–40. Pantuso D, Bathe KJ. A four-node quadrilateral mixed-interpolated element for solids and fluids. Math Models Methods Appl Sci (M3AS). 1995;5(8):1113–28. Pian THH. Derivation of element stiffness matrices by assumed stress distribution. AIAA J. 1964;20:1333–6. Pian THH, Sumihara K. A rational approach for assumed stress finite elements. Int J Num Methods Eng. 1984;20:1685–95. Pian THH, Tong P. Relations between incompatible displacement model and hybrid stress model. Int J Numer Methods Eng. 1986;22:173–81. Piltner R. An alternative version of the Pian-Sumihara element with a simple extension to non-linear problems. Comput Mech. 2000;26:483–9. Prange G. Das Extremum der Formänderungsarbeit Habilitationsschrift. Hannover: Technische Hochschule Hannover; 1916. Reissner E. On a variational theorem in elastictiy. J Math Phys. 1950;29:90–5. Schröder J. Poly-, quasi- and rank-one convexity in applied mechanics, CISM course and lectures 516, chapter anisotropic polyconvex energies. Berlin: Springer; 2010. Schröder J, Klaas O, Stein E, Miehe C. A physically nonlinear dual mixed finite element formulation. Comput Methods Appl Mech Eng. 1997;144:77–92. Schröder J, Neff P, Ebbing V. Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J Mech Phys Solids. 2008;56(12):3486–506. Schröder J, Igelbüscher M, Schwarz A, Starke G. A Prange-Hellinger-Reissner type finite element formulation for small strain elasto-plasticity. Comput Methods Appl Mech Eng. 2017;317:400–18. Seki W, Atluri SN. On newly developed assumed stress finite element formulations for geometrically and materially nonlinear problems. Finite Elements Anal Des. 1995;21:75–110. Simo JC, Taylor RL, Pister KS. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng. 1985;51:177–208. Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng. 1990;29:1595–638. Simo JC, Kennedy JG, Taylor RL. Complementary mixed finite element formulations for elastoplasticity. Comput Methods Appl Mech Eng. 1989;74:177–206. Stenberg R. On the construction of optimal mixed finite element methods for the linear elasticity problem. Numerische Mathematik. 1986;42:447–62. Stenberg R. A family of mixed finite elements for the elastic problem. Numerische Mathematik. 1988;53:513–38. Taylor RL, Simo JC, Zienkiewicz OC, Chan ACH. The patch test—a condition for assessing FEM convergence. Int J Numer Methods Eng. 1986;22:39–62. Wall WA, Bischoff M, Ramm E. A deformation dependent stabilization technique, exemplified by eas elements at large strains. Comput Methods Appl Mech Eng. 2000;188:859–71. Washizu K. On the variational principles of elasticity and plasticity. Aeroelastic and Structure Research Laboratory. Technical Report 25–18. Cambridge: MIT; 1955. Wriggers P. Mixed finite element methods—theory and discretization. In: Carstensen C, Wriggers P, editors. Mixed finite element technologies, volume 509 of CISM International Centre for Mechanical Sciences. Berlin: Springer; 2009. Wriggers P, Reese S. A note on enhanced strain methods for large deformations. Comput Methods Appl Mech Eng. 1996;135:201–9. Yeo ST, Lee BC. Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle. Int J Numer Methods Eng. 1996;39:3083–99. Yu G, Xie X, Carstensen C. Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods. Comput Methods Appl Mech Eng. 2011;200:2421–33. Zienkiewicz OC, Qu S, Taylor RL, Nakazawa S. The patch test for mixed formulations. Int J Numer Methods Eng. 1986;23:1873–83.