An exo-cell assay for examining real-time γ-secretase activity and inhibition

Springer Science and Business Media LLC - Tập 4 - Trang 1-9 - 2009
Christopher C Shelton1,2, Yuan Tian1,3, Mark G Frattini4, Yue-Ming Li1,2
1Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, USA
2Department of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, USA
3Department of Physiology, Biophysics and Systems Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, USA
4Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA

Tóm tắt

γ-Secretase is an aspartyl protease that cleaves multiple substrates that are involved in broad biological processes ranging from stem cell development to neurodegeneration. The investigation of γ-secretase has been limited by currently available assays that require genetic or biochemical manipulation in the form of substrate transfection or membrane preparation. Here we report an exo-cell assay that is capable of characterizing γ-secretase activity in any cellular system without limitation. Using a highly active, recombinant substrate this assay can quickly and easily ascertain the status of γ-secretase activity in cell systems and patient samples. We have applied this method to determine the activity of γ-secretase in primary cell samples where transfection and/or membrane isolation are not viable options. Importantly, it allows for the detection of real time γ-secretase activity after inhibitor or drug treatment. The application of this assay to determine the role of γ-secretase in physiological and pathological conditions will greatly facilitate our characterization of this complex protease and help in the development and evaluation of γ-secretase-targeted therapies in Alzheimer's disease or a variety of neoplasms.

Tài liệu tham khảo

Brown MS, Ye J, Rawson RB, Goldstein JL: Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000, 100 (4): 391-398. 10.1016/S0092-8674(00)80675-3. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F: Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998, 391 (6665): 387-390. 10.1038/34910. Hardy J, Allsop D: Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991, 12 (10): 383-388. 10.1016/0165-6147(91)90609-V. Kopan R, Goate A: A common enzyme connects notch signaling and Alzheimer's disease. Genes Dev. 2000, 14 (22): 2799-2806. 10.1101/gad.836900. Ni CY, Murphy MP, Golde TE, Carpenter G: gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science. 2001, 294 (5549): 2179-2181. 10.1126/science.1065412. Lammich S, Okochi M, Takeda M, Kaether C, Capell A, Zimmer AK, Edbauer D, Walter J, Steiner H, Haass C: Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide. J Biol Chem. 2002, 277 (47): 44754-44759. 10.1074/jbc.M206872200. Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A, Logeat F: The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and {gamma}-secretase. Proc Natl Acad Sci USA. 2003, 100 (13): 7638-7643. 10.1073/pnas.1230693100. Ikeuchi T, Sisodia SS: The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent "gamma-secretase" cleavage. J Biol Chem. 2003, 278 (10): 7751-7754. 10.1074/jbc.C200711200. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004, 306 (5694): 269-271. 10.1126/science.1102160. Li YM, Lai MT, Xu M, Huang Q, DiMuzio-Mower J, Sardana MK, Shi XP, Yin KC, Shafer JA, Gardell SJ: Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc Natl Acad Sci USA. 2000, 97 (11): 6138-6143. 10.1073/pnas.110126897. Shearman MS, Beher D, Clarke EE, Lewis HD, Harrison T, Hunt P, Nadin A, Smith AL, Stevenson G, Castro JL: L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity. Biochemistry. 2000, 39 (30): 8698-8704. 10.1021/bi0005456. McLendon C, Xin T, Ziani-Cherif C, Murphy MP, Findlay KA, Lewis PA, Pinnix I, Sambamurti K, Wang R, Fauq A, Golde TE: Cell-free assays for gamma-secretase activity. FASEB J. 2000, 14 (15): 2383-2386. Yin YI, Bassit B, Zhu L, Yang X, Wang C, Li YM: {gamma}-Secretase Substrate Concentration Modulates the Abeta42/Abeta40 Ratio: IMPLICATIONS FOR ALZHEIMER DISEASE. J Biol Chem. 2007, 282 (32): 23639-23644. 10.1074/jbc.M704601200. Kogoshi H, Sato T, Koyama T, Nara N, Tohda S: Gamma-secretase inhibitors suppress the growth of leukemia and lymphoma cells. Oncol Rep. 2007, 18 (1): 77-80. He F, Wang L, Hu XB, Yin DD, Zhang P, Li GH, Wang YC, Huang SY, Liang YM, Han H: Notch and BCR signaling synergistically promote the proliferation of Raji B-lymphoma cells. Leuk Res. 2008, 33 (6): 798-802. 10.1016/j.leukres.2008.09.016. Reed JC: Molecular biology of chronic lymphocytic leukemia. Semin Oncol. 1998, 25 (1): 11-18. Hubmann R, Schwarzmeier JD, Shehata M, Hilgarth M, Duechler M, Dettke M, Berger R: Notch2 is involved in the overexpression of CD23 in B-cell chronic lymphocytic leukemia. Blood. 2002, 99 (10): 3742-3747. 10.1182/blood.V99.10.3742. McCafferty DG, Lessard IA, Walsh CT: Mutational analysis of potential zinc-binding residues in the active site of the enterococcal D-Ala-D-Ala dipeptidase VanX. Biochemistry. 1997, 36 (34): 10498-10505. 10.1021/bi970543u.