An evolutionary strategy for finding effective quantum 2-body Hamiltonians of p-body interacting systems

Springer Science and Business Media LLC - Tập 1 - Trang 113-122 - 2019
G. Acampora1, V. Cataudella1,2,3, P. R. Hegde1, P. Lucignano1, G. Passarelli1,2, A. Vitiello1
1Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, Naples, Italy
2CNR-SPIN, Naples, Italy
3Istituto Nazionale di Fisica Nucleare - Sezione di Napoli, Naples, Italy

Tóm tắt

Embedding p-body interacting models onto the 2-body networks implemented on commercial quantum annealers is a relevant issue. For highly interacting models, requiring a number of ancilla qubits, that can be sizable and make unfeasible (if not impossible) to simulate such systems. In this manuscript, we propose an alternative to minor embedding, developing a new approximate procedure based on genetic algorithms, allowing to decouple the p-body in terms of 2-body interactions. A set of preliminary numerical experiments demonstrates the feasibility of our approach for the ferromagnetic p-spin model and paves the way towards the application of evolutionary strategies to more complex quantum models.

Tài liệu tham khảo

Albash T, Lidar DA (2018) ., vol 90. https://doi.org/doi/10.1103/RevModPhys.90.015002 Bapst V, Semerjian G (2012) . Journal of Statistical Mechanics: Theory and Experiment 2012(06):P06007. http://stacks.iop.org/1742-5468/2012/i=06/a=P06007 Biamonte JD (2008) . Phys Rev A 77:052331. https://doi.org/doi/10.1103/PhysRevA.77.052331 Brell CG, Flammia ST, Bartlett SD, Doherty AC (2011) . New J Phys 13(5):053039. https://doi.org/10.1088/1367-2630/13/5/053039 Choi V (2008) . Quantum Inf Process 7(5):193. https://doi.org/10.1007/s11128-008-0082-9 Choi V (2011) . Quantum Inf Process 10(3):343. https://doi.org/10.1007/s11128-010-0200-3 Cook SA (1971) .. In: Proceedings of the 3rd annual ACM symposium on theory of computing. STOC ’71. ACM, New York, pp 151–158, https://doi.org/10.1145/800157.805047, (to appear in print) del Campo A, Kim K (2019) . New J Phys 21(5):050201. https://doi.org/10.1088/1367-2630/ab1437 Derrida B (1981) . Phys Rev B 24:2613. https://doi.org/doi/10.1103/PhysRevB.24.2613 Farhi E, Goldstone J, Gutmann S, Sipser M (2000) . arXiv:quant-ph/0001106 Goldberg DE, Holland JH (1988) . Mach Learn 3(2):95. https://doi.org/10.1023/A:1022602019183 Gross D, Mezard M (1984) . Nucl Phys B 240(4):431. https://doi.org/10.1016/0550-3213(84)90237-2. http://www.sciencedirect.com/science/article/pii/0550321384902372 Grover LK (1996) In Proceedings of the Twenty-eighth annual ACM symposium on theory of computing (ACM, 1996), STOC ’96, pp 212–219. http://doi.acm.org/10.1145/237814.237866 Hardy Y, Steeb W H (2010) . Int J Modern Phys C 21(11):1359 Harris R, Berkley A J, Johansson J, Bunyk P, Chapple E M, Enderud C, Hilton J P, Karimi K, Ladizinsky E, Ladizinsky N, Oh T, Perminov I, Rich C, Thom M C, Tolkacheva E, Truncik C J S, Uchaikin S, Wang J, Wilson B, Rose G (2011) . Nature 473:194 Hauke P, Katzgraber H G, Lechner W, Nishimori H, Oliver WD (2019) . arXiv:1903.06559 Herrera F, Lozano M, Sánchez AM (2003) . International Journal of Intelligent Systems 18:309 Leib M, Zoller P, Lechner W (2016) . Quantum Sci Technol 1(1):015008. https://doi.org/10.1088/2058-9565/1/1/015008 Lucas A (2014) . Frontiers in Physics 2:5. https://doi.org/10.3389/fphy.2014.00005. https://www.frontiersin.org/article/10.3389/fphy.2014.00005 Moscato P (1989) Caltech concurrent computation program. C3P Report 826:1989 O’Driscoll L, Nichols R, Knott PA (2019) Quantum Machine Intelligence. https://doi.org/10.1007/s42484-019-00003-8 Ohkuwa M, Nishimori H, Lidar DA (2018) . Phys Rev A 98:022314. https://doi.org/doi/10.1103/PhysRevA.98.022314 Passarelli G, De Filippis G, Cataudella V, Lucignano P (2018) . Phys Rev A 97:022319. https://doi.org/doi/10.1103/PhysRevA.97.022319 Passarelli G, Cataudella V, Lucignano P (2019) Improving quantum annealing of the ferromagnetic p-spin model through pausing. Phys Rev B 100(2):024302. https://doi.org/10.1103/PhysRevB.100.024302. https://doi.org/doi/10.1103/PhysRevB.100.024302 Passarelli G, De Filippis G, Cataudella V, Lucignano P. (2019) . arXiv:1901.07787 Rezakhani A T, Kuo W J, Hamma A, Lidar D A, Zanardi P (2009) . Phys Rev Lett 103:080502. https://doi.org/10.1103/PhysRevLett.103.080502 Seki Y, Nishimori H (2012) . Phys Rev E 85:051112. https://doi.org/doi/10.1103/PhysRevE.85.051112 Seoane B, Nishimori H (2012) . Journal of Physics A: Mathematical and Theoretical 45(43):435301. http://stacks.iop.org/1751-8121/45/i=43/a=435301 Susa Y, Yamashiro Y, Yamamoto M, Hen I, Lidar DA, Nishimori H (2018) . Phys Rev A 98:042326. https://doi.org/doi/10.1103/PhysRevA.98.042326 Tanahashi K, Takayanagi S, Motohashi T, Tanaka S (2019) . Journal of the Physical Society of Japan 88(6):061010. https://doi.org/10.7566/JPSJ.88.061010 Yao X (1993) . Microprocessing and Microprogramming 38(1):707. https://doi.org/10.1016/0165-6074(93)90215-7. http://www.sciencedirect.com/science/article/pii/0165607493902157. Proceedings Euromicro 93 Open System Design: Hardware, Software and Applications