An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe

Biogeosciences - Tập 8 Số 2 - Trang 489-503
V. S. Saba, Marjorie A. M. Friedrichs, David Antoine1, Richard A. Armstrong, I. Asanuma, M. Behrenfeld2, Áurea Maria Ciotti, Mark Dowell, N. Hoepffner3, Kimberly J.W. Hyde, Joji Ishizaka, T. Kameda, J. Marra4, F. Mélin5, A. Morel1, J. O'Reilly, M. Scardi, W. O. Smith6, Tim Smyth, S. Tang, Julia Uitz7, K. Waters, Toby K. Westberry2
1LOV - Laboratoire d'océanographie de Villefranche (Observatoire Océanologique Station zoologique 181, chemin du lazaret BP 28 06230 VILLEFRANCHE SUR MER Cedex - France)
2Department of Botany and Plant Pathology (United States)
3JOINT RESEARCH CENTER ITA (Italy)
4Paulista University (R. Dr. Bacelar 1212 São Paulo 04026-002 Brazil - Brazil)
5IES - JRC Institute for Environment and Sustainability (Via E. Fermi 2749, I-21027 Ispra - Italy)
6VIMS - Virginia Institute of Marine Science (Gloucester Point, VA - United States)
7SIO - UC San Diego - Scripps Institution of Oceanography (University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0208, U.S.A. - United States)

Tóm tắt

Abstract. Nearly half of the earth's photosynthetically fixed carbon derives from the oceans. To determine global and region specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ 14C measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, subtropical North Pacific, Ross Sea, West Antarctic Peninsula, and the Antarctic Polar Frontal Zone. Average model skill, as determined by root-mean square difference calculations, was lowest in the Black and Mediterranean Seas, highest in the pelagic North Atlantic and the Antarctic Polar Frontal Zone, and intermediate in the other six regions. The maximum fraction of model skill that may be attributable to uncertainties in both the input variables and in situ NPP measurements was nearly 72%. On average, the simplest depth/wavelength integrated models performed no worse than the more complex depth/wavelength resolved models. Ocean color models were not highly challenged in extreme conditions of surface chlorophyll-a and sea surface temperature, nor in high-nitrate low-chlorophyll waters. Water column depth was the primary influence on ocean color model performance such that average skill was significantly higher at depths greater than 250 m, suggesting that ocean color models are more challenged in Case-2 waters (coastal) than in Case-1 (pelagic) waters. Given that in situ chlorophyll-a data was used as input data, algorithm improvement is required to eliminate the poor performance of ocean color NPP models in Case-2 waters that are close to coastlines. Finally, ocean color chlorophyll-a algorithms are challenged by optically complex Case-2 waters, thus using satellite-derived chlorophyll-a to estimate NPP in coastal areas would likely further reduce the skill of ocean color models.

Từ khóa


Tài liệu tham khảo

Antoine, D. and Morel, A.: Oceanic primary production: I. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cy., 10, 43–55, 1996.

Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in the Southern Ocean, 1997–2006, J. Geophys. Res., 113, C08004, https://doi.org/10.1029/2007JC004551, 2008.

Armstrong, R. A.: Optimality-based modeling of nitrogen allocation and photo-acclimation in photosynthesis, Deep-Sea Res. Pt. II, 53, 513–531, 2006.

Asanuma, I.: Depth and Time Resolved Primary Productivity Model Examined for Optical Properties of Water, Global Climate Change and Response of Carbon Cycle in the Equatorial Pacific and Indian Oceans and Adjacent Landmasses, Elsev. Oceanogr. Serie., 73, 89–106, 2006.

Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, 1997.

Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.: Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cy., 19, GB1006, https://doi.org/10.1029/2004GB002299, 2005.

Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, 2006.

Campbell, J., Antoine, D., Armstrong, R., Arrigo, K., Balch, W., Barber, R., Behrenfeld, M., Bidigare, R., Bishop, J., Carr, M.-E., Esaias, W., Falkowski, P., Hoepffner, N., Iverson, R., Kiefer, D., Lohrenz, S., Marra, J., Morel, A., Ryan, J., Vedernikov, V., Waters, K., Yentsch, C., and Yoder, J.: Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance, Global Biogeochem. Cy., 16, 1035, https://doi.org/10.1029/2001GB001444, 2002.

Carr, M. E.: Estimation of potential productivity in Eastern Boundary Currents using remote sensing, Deep-Sea Res. Pt. II, 49, 59–80, 2002.

Carr, M. E., Friedrichs, M. A. M., Schmeltz, M., Aita, M. N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F., Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y.: A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Pt. II, 53, 741–770, 2006.

Dinniman, M. S. and Klinck, J. M.: A model study of circulation and cross-shelf exchange on the west Antarctic Peninsula continental shelf, Deep-Sea Res. Pt. II, 51, 2003–2022, 2004.

Doney, S. C.: A synoptic atmospheric surface forcing data set and physical upper ocean model for the U.S. JGOFS Bermuda Atlantic Time-Series Study (BATS) site, J. Geophys. Res., 101, 25615–25634, 1996.

Doney, S. C., Yeager, S., Danabasoglu, G., Large, W. G., and McWilliams, J. C.: Mechanisms governing interannual variability of upper-ocean temperature in a global ocean hindcast simulation, J. Phys. Oceanogr., 37, 1918–1938, 2007.

D'Ortenzio, F., Iudicone, D., de Boyer Montegut, C., Testor, P., Antoine, D., Marullo, S., Santoleri, R., and Madec, G.: Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles, Geophys. Res. Lett., 32, L12605, https://doi.org/10.1029/2005GL022463, 2005.

Eppley, R. W.: Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 1063–1085, 1972.

Eppley, R., Steward, E., Abbott, M., and Heyman, U.: Estimating ocean primary production from satellite chlorophyll: Introduction to regional differences and statistics for the southern California Bight, J. Plankton Res., 7, 57–70, 1985.

Friedrichs, M. A. M., Carr, M.-E., Barber, R. T., Scardi, M., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Buitenhuis, E. T., Chai, F., Christian, J. R., Ciotti, A. M., Doney, S. C., Dowell, M., Dunne, J., Gentili, B., Gregg, W., Hoepffner, N., Ishizaka, J., Kameda, T., Lima, I., Marra, J., Mélin, F., Moore, J. K., Morel, A., O'Malley, R. T., O'Reilly, J., Saba, V. S., Schmeltz, M., Smyth, T. J., Tjiputra, J., Waters, K., Westberry, T. K., and Winguth, A.: Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean, J. Marine Syst., 76, 113–133, 2009.

Gordon, H. R. and Morel, A.: Remote assessment of ocean color for interpretation of satellite visible imagery, A review, in: Lecture notes on coastal and estuarine studies, edited by: Barber, R. T., Mooers, N. K., Bowman, M. J., and Zeitzschel, B., New York: Springer-Verlag, 114 pp., 1983.

Howard, K. L. and Yoder, J. A.: Contribution of the sub-tropical oceans to global primary production, in: Proceedings of COSPAR Colloquium on Space Remote Sensing of Subtropical Oceans, edited by: Liu, C.-T., Pergamon, New York, 157–168, 1997.

Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A. M., Helber, R., and Arnone, R. A.: Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment, J. Marine Syst., 76, 64–82, 2009.

Kameda, T. and Ishizaka, J.: Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing, J. Oceanogr., 61, 663–672, 2005.

Kara, A. B., Wallcraft, A. J., and Hurlburt, H. E.: How does solar attenuation depth affect the ocean mixed layer? Water turbidity and atmospheric forcing impacts on the simulation of seasonal mixed layer variability in the turbid Black Sea, J. Climate, 18, 389–409, 2005.

Levitus, S.: Climatological Atlas of the World Ocean, NOAA/ERL GFDL Professional Paper, 13, 173 pp., 1982.

Marra, J., Ho, C., and Trees, C.: An alternative algorithm for the calculation of primary productivity from remote sensing data, LDEO Technical Report, {#}LDEO-2003-1., 2003.

Mélin, F. and Hoepffner, N.: Monitoring Phytoplankton Productivity from Satellite – An Aid to Marine Resources Management, in: Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management, edited by: Morales, J., Stuart, V., Platt, T., and Sathyendranath, S., EU PRESPO and IOCCG, 79–93, 2011.

Morel, A. and Maritorena, S.: Bio-optical properties of oceanic waters: A reappraisal, J. Geophys. Res., 106, 7163–7180, 2001.

Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709–722, 1977.

Olofsson, P., Van Laake, P. E., and Eklundh, L.: Estimation of absorbed PAR across Scandinavia from satellite measurements: Part I: Incident PAR, Remote Sens. Environ., 110, 252–261, 2007.

Ondrusek, M. E., Bidigare, R. R., Waters, K., and Karl, D. M.: A predictive model for estimating rates of primary production in the subtropical North Pacific Ocean, Deep-Sea Res. Pt. II, 48, 1837–1863, 2001.

Saba, V. S., Spotila, J. R., Chavez, F. P., and Musick, J. A.: Bottom-up and climatic forcing on the worldwide population of leatherback turtles, Ecology, 89, 1414–1427, 2008.

Saba, V. S., Friedrichs, M. A. M., Carr, M.-E., Antoine, D., Armstrong, R. A., Asanuma, I., Aumont, O., Bates, N. R., Behrenfeld, M. J., Bennington, V., Bopp, L., Bruggeman, J., Buitenhuis, E. T., Church, M. J., Ciotti, A. M., Doney, S. C., Dowell, M., Dunne, J., Dutkiewicz, S., Gregg, W., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Karl, D. M., Lima, I., Lomas, M. W., Marra, J., McKinley, G. A., Mélin, F., Moore, J. K., Morel, A., O'Reilly, J., Salihoglu, B., Scardi, M., Smyth, T. J., Tang, S., Tjiputra, J., Uitz, J., Vichi, M., Waters, K., Westberry, T. K., and Yool, A.: Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT, Global Biogeochem. Cy., 24, GB3020, https://doi.org/10.1029/2009GB003655, 2010.

Scardi, M.: Advances in neural network modeling of phytoplankton primary production, Ecol. Model., 146, 33–45, 2001.

Smyth, T. J., Tilstone, G. H., and Groom, S. B.: Integration of radiative transfer into satellite models of ocean primary production, J. Geophys. Res., 110, C10014, https://doi.org/10.1029/2004JC002784, 2005.

Stow, C. A., Jolliff, J., McGillicuddy Jr., D. J., Doney, S. C., Icarus Allen, J., Friedrichs, M. A. M., Rose, K. A., and Wallhead, P.: Skill assessment for coupled biological/physical models of marine systems, J. Marine Syst., 76, 4–15, 2009.

Tang, S., Chen, C., Zhan, H., and Zhang, T.: Determination of ocean primary productivity using support vector machines, Int. J. Remote Sens., 29, 6227–6236, 2008.

Uitz, J., Yannick, H., Bruyant, F., Babin, M., and Caustre, H.: Relating phytoplankton photophysiological properties to community structure on large scales, Limnol. Oceanogr., 53, 614–630, 2008.

Westberry, T. K., Behrenfeld, M. J., Siegel, D. A., and Boss, E.: Carbon-based primary productivity modeling with vertically resolved photoacclimation, Global Biogeochem. Cy., 22, GB2024, https://doi.org/10.1029/2007GB003078, 2008.

Zainuddin, M., Kiyofuji, H., Saitoh, K., and Saitoh, S. I.: Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific, Deep-Sea Res. Pt. II, 53, 419–431, 2006.