Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình lập kế hoạch lực lượng lao động nâng cao dựa trên độ tin cậy cho ngành công nghiệp quy trình sử dụng phương pháp kết hợp lập trình mục tiêu mờ và tiến hóa vi phân
Tóm tắt
Bài báo này dựa trên khái niệm "độ tin cậy của con người" như một cấu trúc để tìm hiểu về việc đánh giá lực lượng lao động bảo trì trong ngành công nghiệp quy trình. Độ tin cậy của con người dựa vào việc phát triển độ tin cậy của con người đến một ngưỡng giúp lực lượng lao động bảo trì thực hiện các quyết định chính xác trong giới hạn của nguồn lực và phân bổ thời gian. Khái niệm này cung cấp một điểm khác biệt đáng giá để bao gồm ba điều chỉnh tinh tế vào mô hình tài liệu về thời gian bảo trì, hiệu suất lực lượng lao động và lợi tức đầu tư vào lực lượng lao động. Những điều này giải thích đầy đủ kết quả của sự ảnh hưởng của chúng tôi. Cấu trúc được trình bày lần đầu tiên mở ra những khía cạnh mới trong lý thuyết và thực hành lực lượng lao động bảo trì từ một số góc độ. Đầu tiên, chúng tôi đã thành công trong việc áp dụng kỹ thuật lập trình mục tiêu mờ (FGP) và tiến hóa vi phân (DE) để giải quyết vấn đề tối ưu hóa trong bảo trì một nhà máy quy trình lần đầu tiên. Kết quả thu được trong công trình này cho thấy chất lượng giải pháp tốt hơn từ thuật toán DE so với những thuật toán như thuật toán di truyền và thuật toán tối ưu hóa bầy đàn, từ đó thể hiện sự ưu việt của quy trình được đề xuất. Thứ hai, bài phân tích lý thuyết, được khung trên lý thuyết ngẫu nhiên, tập trung vào ứng dụng cụ thể cho một nhà máy quy trình tại Nigeria là một sự đổi mới. Công trình cung cấp thêm cái nhìn trong việc lập kế hoạch lực lượng lao động bảo trì trong suốt quá trình sửa chữa và các hoạt động bảo trì ngoài giờ trong các hệ thống sản xuất và thể hiện khả năng tạo ra thông tin hữu ích đáng kể cho thực hành.
Từ khóa
#độ tin cậy của con người #lập kế hoạch lực lượng lao động #bảo trì #lập trình mục tiêu mờ #tiến hóa vi phân #tối ưu hóa #ngành công nghiệp quy trìnhTài liệu tham khảo
Ahmed Q, Moghaddam KS, Raza SA, Khan FI (2015) A multi-constrained maintenance scheduling optimisation model for a hydrocarbon processing facility. ProcIMech E Part O J Risk Reliab 229(2):151–168
Alba E, Luque G, Luna F (2007) Parallel meta-heuristic for workforce planning. J Math Algorithms 6(3):509–528
Amiri M, Khajeh M (2016) Developing a bi-objective optimisation model for solving the availability allocation problem in repairable series–parallel systems by NSGA II. J Ind Eng Int 12:61–69
Azadeh A, Zadeh SA (2016) An integrated fuzzy analytic hierarchy process and fuzzy multiple-criteria decision making simulation approach for maintenance policy selection. Simul Trans Soc Model Simul Int 92(1):3–18
Azadeh A, Farahani MH, Kalantari SS, Zarrin M (2015) Solving a multi-objective open shop problem for multi-processors under preventive maintenance. Int J Adv Manuf Technol 78(5):707–722
Azzouz R, Bechikh S, Said LB (2016) Dynamic multi-objective optimization using evolutionary algorithm; A survey. Recent advances in evolutionary multi-objective optimization, 20 adaptation, learning and optimization. Springer, Cham, pp 31-7
Beji N, Jarboui B, Siarry P, Chabchoub H (2012) A differential evolution algorithm to solve redundancy allocation problems. Int Trans Oper Res 19(6):809–824
Belmokaddem M, Mekidiche A, Sahed A (2009) Application of a fuzzy goal programming approach with different importance and priorities to aggregate production planning. J Appl Quant Method 4(3):317–331
Boring RL, Bye A (2008) Bridging human factors and human reliability analysis. In: Proceedings of the Human Factors and Ergonomics Society, 52nd Annual Meeting, pp 733–737
Boring RL, Gertman DI, Marble JL (2004) Temporal factors of human error in SPAR-H human reliability analysis modelling. In: Proceedings of the Human Factors and Ergonomics Society, 48th Annual Meeting, pp 1165–1169
Chen Z-Q, Wang R-L (2011) Two efficient real-coded genetic algorithms for real parameter optimisation. Int J Innov Comput Inf Cont 7(8):4871–4883
Cormier G, Boudreau R, Theriault S (2001) Real-coded genetic algorithm for Bragg grating parameter synthesis. J Opt Soc Am B 18(12):1771–1776
Dale BG, Plunkett JJ (1984) A study of audits, inspection and quality costs in the pressure vessel fabrication sector of the process plant industry. Proc IMechE 198B(2):45–54
De Bruecker P, Van den Bergh J, Belien J, Demeulemeester E (2015) Workforce planning incorporating skills: state-of-the-art. Eur J Oper Res 243(1):1–16
De A, Awasthi A, Tiwari MK (2015) Robust formulation for optimizing sustainable ship routing and scheduling problem. IFAC-PapersOnLine 48(3):368–373
De A, Mamanduru VKR, Gunasekaran A, Subramanian N, Tiwari MK (2016) Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimisation. Comput Ind Eng 96:201–215
De A, Kumar SK, Gunasekaran A, Tiwari MK (2017) Sustainable maritime inventory routing problem with time window constraints. Eng Appl Artif Intell 61(C):77–95
Dolatshahi-Z A, Khalili-Damghani K (2015) Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization. Reliab Eng Syst Safe 133:11–21
Duffuaa SO, Ben-Daya M, Al-Sultan KO, Andijani AA (2001) A generic conceptual simulation model in maintenance systems. J Qual Maint Eng 7(3):207–219
Ebrahimipour V, Najjarbashi A, Sheikhalishahi M (2015) Multi-objective modelling for preventive maintenance scheduling in a multiple production line. J Intell Manuf 26(1):111–122
Eiholzer T, Olsen D, Hoffmann S, Sturm B, Wellig B (2017) Integration of a solar thermal system in a medium-sized brewery using pinch analysis: methodology and case study. Appl Therm Eng 113:1558–1568
Engelbrencht AP (2007) Artificial intelligence: an introduction. Wiley, England
Flage R (2013) On risk reduction principle in the context of maintenance optimisation modelling. Proc I Mech E Pant O J Risk Reliab 242(2):631–643
Gavranis A, Kozanidis G (2015) An exact solution algorithm for maximizing the fleet availability of a unit of aircraft subject to flight and maintenance requirements. Eur J Oper Res 242(2):631–643
Ghezavati VR, Beigi M (2016) Solving a bi-objective mathematical model for location-routing problem with time windows in multi-echelon reverse logistics using metaheuristic procedure. J Ind Eng Int 12(4):469–483
Holland JH (1975) Adoption in neural and artificial systems. The University of Michigan Press, Ann Arbor
Ighravwe DE, Oke SA (2014) A non-zero integer non-linear programming model for maintenance workforce sizing. Int J Prod Econ 150:204–214
Ighravwe DE, Oke SA (2016) A machine survival time-based maintenance workforce allocation model for production systems. Afr J Sci Tech Innov Dev 8(5–6):1–10
Ighravwe DE, Oke SA, Adebiyi KA (2016a) Maintenance workload optimisation with accident occurrence considerations and absenteeism from work using a genetic algorithm. Int J Manag Sci Eng Manag 11(4):294–302
Ighravwe DE, Oke SA, Adebiyi KA (2016b) A reliability-based maintenance technicians’ workload optimisation model with stochastic considerations. J Ind Eng Int 12:171–183
Javanmard H, Koraeizadeh A (2016) Optimizing the preventive maintenance scheduling by genetic algorithm based on cost and reliability in National Iranian Drilling Company. J Ind Eng Int 12:509–516
Judice J, Martins P, Nunes J (2004) Workforce planning in a lot sizing mail processing problem. Comput Oper Res 32:3031–3058
Kennedy J and Eberhart R (1995) Particle swarm optimisation. In: Proceedings of the Fourth IEEE international conference on neural networks, Perth, Australia, IEEE Service Centre, pp 1942-1948
Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San Mateo
Khalili-Damghani K, Amiri M (2012) Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA. Reliab Eng Syst Saf 103:35–44
Khalili-Damghani K, Shahrokh A (2014) Solving a new multi-period multi-objective multi-product aggregate production planning problem using fuzzy goal programming. Ind Eng Manag Syst 13(4):369–382
Khalili-Damghani K, Sadi-Nezhad S, Tavana M (2013a) Solving multi-period project selection problems with fuzzy goal programming based on TOPSIS and a fuzzy preference relation. Inf Sci 252:42–61
Khalili-Damghani K, Abtahi A-R, Tavana M (2013b) A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems. Reliab Eng Syst Saf 111:58–75
Khalili-Damghani K, Abtahi A-R, Tavana M (2014) A decision support system for solving multi-objective redundancy allocation problems. Qual Reliab Eng Int 30(8):1249–1262
Kleenman MP, Lamount GB (2005) Solving the aircraft engine maintenance scheduling problem using a multi-objective evolutionary algorithm, in 3410, Lecture notes in computer science. Springer, Heidelberg, pp 782–796
Knapp GM, Mahajan M (1998) Optimization of maintenance organization and man-power in process industries. J Qual Maint Eng 4(3):168–183
Kozanidis G (2009) A multiobjective model for maximizing fleet availability under the presence of flight and maintenance requirements. J Adv Transp 43(2):155–182
Kozanidis G, Gavranis A, Kostarelou E (2012a) Mixed integer least squares optimization for flight and maintenance planning of mission aircraft. Naval Res Logist 59(3–4):212–229
Kozanidis G, Gavramis A, Kostarehouf E (2012b) Mixed integer least squares optimisation for flight and maintenance planning of mission aircraft. Naval Res Logist 59(3–4):212–229
Kubule A, Zogla L, Ikaunieks J, Rosa M (2016) Highlights on energy efficiency improvements: a case of a small brewery. J Clean Prod 138:275–286
Lei D (2013) Multi-objective artificial bee colony for interval job shop scheduling with flexible maintenance. Int J Adv Manuf Technol 66(9):1835–1843
Ling H, Zheng Y, Zhang Z, Zhou X (2011) A new multi-objective particle swarm optimization algorithm for strategic planning of equipment maintenance in Advances in Swarm Intelligence. Lect Notes Comput Sci 6729:57–65
Maiti SK, Roy SK (2016) Multi-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming approach. J Ind Eng Int 12(3):287–298
Mansour MAA-F (2011) Solving the periodic maintenance scheduling problem via genetic algorithm to balance workforce levels and maintenance cost. Am J Eng and Appl Sci 4(2):223–234
Meisels A, Kaplansky E (2004) Iterative restart techniques for solving timetabling problems. Eur J Oper Res 153:41–50
Moradgholi M, Paydar MM, Mahdavi I, Jouzdani J (2016) A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem. J Ind Eng Int 12:343–359
Nie L (2016) Parallel machine scheduling problem of flexible machine activities with fuzzy random time windows. Adv Intell Syst Comput 502:1027–1040
Nnobi-Okoye CC, Okiy S, Igboanugo AC (2016) Performance evaluation of multi-input-single-output (MISSO) production process using transfer function and fuzzy logic: case study of a brewery. Ain Shams Eng J 7:1001–1010
Orlikowski J, Krakowiak S (2013) Pitting corrosion and stress-corrosion cracking of buffer banks in a brewery. Eng Fail Anal 29:75–82
Ouadfel S, Batouche M, Taleb-Ahmed A (2010) A new particle swarm optimization algorithm for dynamic image clustering. In: Digital Information Management (ICDIM), 2010 fifth international conference, 5–8 July 2010, Thunder Bay, Canada
Pant S, Kumar A, Ram M (2017) Reliability optimization: a particle swarm approach. In: Ram M, Davim J. (eds) Adv Reliab Syst Eng., Manag Ind Eng. Springer, Switzerland. doi:10.1007/978-3-319-48875-2_7
Piasson D, Biscaro AAP, Leao FB, Mantovani JRS (2016) A new approach for reliability centered maintenance programs in electric power distribution systems based on multiobjective genetic algorithm. Electr Power Syst Res 137:41–50
Rabbani M, Montazeri M, Farrokhi-Asl H, Rafiei H (2016) A multi-objective genetic algorithm for a mixed-model assembly U-line balancing type-I problem considering human-related issues, training, and learning. J Ind Eng Int 12(4):485–497
Rabbani M, Farrokhi-Asl H, Asgarian B (2017) Solving a bi-objective location routing problem by a NSGA-II combined with clustering approach: application in waste collection problem. J Ind Eng Int 13(1):13–27
Ramirez-Hernandez JA, Fernandez-Graucherand E, O’Connor M, Patel N (2007) Conversion of non-calendar to calendar-fine based preventive maintenance schedules for semiconductor manufacturing systems. J Qual Maint Eng 13(3):259–275
Raza SA, Al-Turki UM (2007) A comparative study of heuristic algorithms to solve maintenance scheduling problem. J Qual Maint Eng 13(4):398–410
Raza SA, Al-Turki UM (2010) A new policy for scheduling maintenance on a single machine. Int J Appl Decis Sci 3(2):132–150
Sadeghi J, Sadeghi A, Saidi-Mehrabad M (2011) A parameter-tuned genetic algorithm for vendor managed inventory model for a case single-vendor single-retailer with multi-product and multi-constraint. J Optim Ind Eng 9:57–67
Safaei N, Banjevic D, Jardine AKS (2008) Multi-objective simulated annealing for a maintenance workforce scheduling problem: a case study. In: Tan CM (ed) simulated annealing. I-Tech Education and Publishing, Vienna, pp 27–48
Sarker BR, Yu JC (1995) A balanced maintenance schedule for a failure-prone system. Int J Qual Reliab Manag 12(9):183–191
Sergaki A, Kalaitzakis K (2002) A fuzzy knowledge based method for maintenance planning in a power system. Reliab Eng Syst Saf 77(8):19–30
Shahriari M (2016) Multi-objective optimization of discrete time–cost tradeoff problem in project networks using non-dominated sorting genetic algorithm. J Ind Eng Int 12(2):159–169
Shahriari M, Shoja N, Zade AE, Mani SB (2016) JIT single machine scheduling problem with periodic preventive maintenance. J Ind Eng Int 12(3):299–310
Sturm B, Butcher M, Wang Y, Huang Y, Roskilly T (2012) The feasibility of the sustainable energy supply from bio-wastes for a small scale brewery: a case study. Appl Therm Eng 39:45–52
Visier (2015) From HR metrics to workforce analytics: five key workforce insights that every employer should capture for greater business impact. http://www.workforce.com/ext/resources. Accessed 26 Mar 2015
Wyld J, Pugh G (2010) Evaluating the impact of progressive beer duty on small breweries: a case study of tax breaks to promote SMES. Environ Plan C Gov Policy 28:225–240
Yulan J, Zuhua J, Wenrui H (2008) Multi-objective integrated optimization research on preventive maintenance planning and production scheduling for a single machine. Int J Adv Manuf Technol 39(9):954–964