An energy-based study of the embedded element method for explicit dynamics
Tóm tắt
The embedded finite element technique provides a unique approach for modeling of fiber-reinforced composites. Meshing fibers as distinct bundles represented by truss elements embedded in a matrix material mesh allows for the assignment of more specific material properties for each component rather than homogenization of all of the properties. However, the implementations of the embedded element technique available in commercial software do not replace the material of the matrix elements with the material of the embedded elements. This causes a redundancy in the volume calculation of the overlapping meshes leading to artificially increased stiffness and mass. This paper investigates the consequences in the energy calculations of an explicit dynamic model due to this redundancy. A method for the correction of the edundancy within a finite element code is suggested which removes extra energy and is shown to be effective at correcting the energy calculations for large amounts of redundant volume.
Tài liệu tham khảo
Belytschko T, Fish J, Engelmann BE. A finite element with embedded localization zones. Computer Methods Appl Mech Eng. 1988;70(1):59–89.
Fish J, Belytschko T. Elements with embedded localization zones for large deformation problems. Computers Struct. 1988;78:10.
Huynh DBP, Belytschko T. The extended finite element method for fracture in composite materials. Int J Numer Methods Eng. 2009;77(2):214–39. https://doi.org/10.1002/nme.2411.
Jiang WG, Hallett SR, Wisnom MR. Development of Domain Superposition Technique for the Modelling of Woven Fabric Composites. Computational Methods Appl Sci. 2008;10:281–91. https://doi.org/10.1007/978-1-4020-8584-0_14.
Takano N, Uetsuji Y, Kashiwagi Y, Zako M. Hierarchical modelling of textile composite materials and structures by the homogenization method. Model Simul Mater Sci Eng. 1999;7(2):207–31. https://doi.org/10.1088/0965-0393/7/2/006.
Fish J. The s-version of the finite element method. Computers Struct. 1992;43(3):539–47.
Fish J, Markolefas S. Thes-version of the finite element method for multilayer laminates. Int J Numer Methods Eng. 1992;33(5):1081–105. https://doi.org/10.1002/nme.1620330512.
Zako M, Uetsuj Y, Kurashiki T. Finite element analysis of damaged woven fabric composite materials. Composit Sci Technol. 2003;63(3–4):507–16.
Ohyama D, Kurashiki T, Watanabe Y, Fujita Y, Zako M. ESTIMATION OF MECHANICAL BEHAVIOR OF BRAIDED COMPOSITES BASED ON MESH SUPERPOSITION METHOD; 2011. p. 6.
Iarve EV, Mollenhauer DH, Zhou EG, Breitzman T, Whitney TJ. Independent mesh method-based prediction of local and volume average fields in textile composites. Composites. 2009;40(12):1880–90.
Cox BN, Carter WC, Fleck NA. A binary model of textile composites-I. Formulation Acta Metallurgica et Materialia. 1994;42(10):3463–79.
Yang Q, Cox B. Spatially Averaged Local Strains in Textile Composites Via the Binary Model Formulation. J Eng Mater Technol. 2003;125(4):418–25.
Heru Utomo BD. High-speed Impact Modelling and Testing of Dyneema Composite, PhD Technische Universiteit Delft; 2011.
Vanalli L, Paccola RR, Coda HB. A simple way to introduce fibers into FEM models. Commun Numer Methods Eng 2007;24(7):585–603 oi 10.1002/cnm.983
Garg AK, Abolmaali A. Finite-Element Modeling and Analysis of Reinforced Concrete Box Culverts. J Transport Eng. 2009;135(3):121–8.
Kang J, Bolander JE. Event-based lattice modeling of strain-hardening cementitious composites. Int J Fract. 2017;206(2):245–61. https://doi.org/10.1007/s10704-017-0214-2.
Häussler-Combe U, Shehni A, Chihadeh A. Finite element modeling of fiber reinforced cement composites using strong discontinuity approach with explicit representation of fibers. Int J Solids Struct. 2020;200–201:213–30.
Pan Y, Sullivan D, Shreiber DI, Pelegri AA. Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D RVE to Determine Material Properties. Front Bioeng Biotechnol. 2013. https://doi.org/10.3389/fbioe.2013.00019/abstract.
Yousefsani SA, Shamloo A, Farahmand F. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique. J Mech Behav Biomed Mater. 2018;80:194–202.
Garimella HT, Menghani RR, Gerber JI, Sridhar S, Kraft RH. Embedded Finite Elements for Modeling Axonal Injury. Ann Biomed Eng. 2019;47(9):1889–907. https://doi.org/10.1007/s10439-018-02166-0.
Tabatabaei SA, Lomov SV. Eliminating the volume redundancy of embedded elements and yarn interpenetrations in meso-finite element modelling of textile composites. Computers Struct. 2015;152:142–54.
Chowdhury NT, Joosten MW, Pearce GMK. An embedded meshing technique (SET) for analysing local strain distributions in textile composites. Composite Structures. 2019;210:294–309.
Radtke FKF, Simone A, Sluys LJ. A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres. Int J Numer Methods Eng. 2010;84(6):708–32.
Bower A. In: Theory and Implemention of the Finite Element Method: Generalized FEM for Static Linear Elasticity; 2010. http://solidmechanics.org/Text/Chapter8_1/Chapter8_1.php#Sect8_1_1.
Bower A. In: Theory and Implemention of the Finite Element Method: The Finite Element Method for Dynamic Linear Elasticity; 2010. http://solidmechanics.org/Text/Chapter8_2/Chapter8_2.php.
Bower A. In: Work Done by Stresses; Principle of Virtual Work; 2010. http://solidmechanics.org/Text/Chapter2_4/Chapter2_4.php.
Belytschko T, Liu WK, Moran B, Elkhodary KI. Nonlinear Finite Elements for Continua and Structures. New York: Wiley; 2014.
Systèmes D. Abaqus 2020 Documentation. Abaqus/Constraints/Embedded Elements. Dassault Systèmes; 2020. https://help.3ds.com/2020/english/DSSIMULIA_Established/SIMACAECSTRefMap/HelpViewerDS.aspx?version=2020 &prod=DSSIMULIA_Established &lang=english &path=SIMACAECSTRefMap%2fsimacst-c-embeddedelement.htm &ContextScope=all &id=467a17ba7465488d89073dbf5af93ef4.
Liu BG, Kandan K, Wadley HNG, Deshpande VS. High strain rate compressive response of ultra-high molecular weight polyethylene fibre composites. Int J Plasticity. 2019;122:115–34.
Bonet J, Gil AJ, Wood RD. Nonlinear Solid Mechanics for Finite Element Analysis: Statics. Cambridge: Cambridge University Press; 2016.