An empirical study of the effect that a computer graphics course has on visual-spatial abilities

José Saúl González Campos1, Jordi Sánchez-Navarro1, Joan Arnedo-Moreno1
1Universitat Oberta de Catalunya (UOC), Barcelona, Spain

Tóm tắt

Visual-spatial abilities are relevant for performing diverse everyday tasks as well as being successful in multiple fields. This work provides empirical evidence supporting the claim that studying a computer graphics course, as commonly offered in computer science or engineering programs, can help develop stronger visual-spatial abilities. This benefit was estimated with the assessment of students’ performances in a standardized test of visual-spatial abilities. This empirical pre-test/post-test study ran for three consecutive semesters and involved six computer graphics groups where students were evaluated with the Purdue Spatial Visualization Test to measure whether the full-semester working on contents heavily related to 2D/3D geometric transformations had a positive effect on students’ visual-spatial intelligence. Results show a statistically significant increase in the average score in the test, which in turn suggests that these cognitive abilities could be reinforced or trained through the normal course workload. Additional findings in this study suggest that a retest gaining factor is present just by taking the test twice, and that there is a weak correlation between students’ level of visual-spatial abilities at the beginning of the course and the final grades obtained at the end of the semester.

Tài liệu tham khảo

ACM/IEEE. (2013). Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science, (p. 518). New York: ACM. http://dx.doi.org/10.1145/2534860. Alley, T. (2006). Computer Graphics Knowledge Base Report. https://education.siggraph.org/resources/knowledge-base/report. Online; Accessed 26 June 2019. Blade, M.F., & Watson, W.S. (1955). Increase in spatial visualization test scores during engineering study. Psychological Monographs: General and Applied, 69(12), 1–13. https://doi.org/10.1037/h0093697. Branoff, T.J. (2000). Spatial visualization measurement: A modification of the purdue spatial visualization test-visualization of rotations. Engineering Design Graphics Journal, 64(2), 14–22. Carroll, J.B. (1993). Human Cognitive Abilities: a Survey of Factor-analytic Studies. Cambridge: Cambridge Univ. Press. Cary, R. (2004). Multiple Intelligences Reconsidered. New York: Peter Lang. https://www.peterlang.com/view/title/58269. Crown, S.W. (2001). Improving visualization skills of engineering graphics students using simple javascript web based games. Journal of Engineering Education, 90(3), 347–355. https://doi.org/10.1002/j.2168-9830.2001.tb00613.x. https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2168-9830.2001.tb00613.x. Dorval, M., & Pépin, M. (1986). Effect of playing a video game on a measure of spatial visualization. Perceptual and Motor Skills, 62(1), 159–162. https://doi.org/10.2466/pms.1986.62.1.159. Eliot, J., & Smith, I.M. (1983). An International Directory of Spatial Tests. Berks: Nfer-Nelson. Friess, A., Martin, E.L., Esparragoza, I.E., Lawanto, O. (2016). Improvements in student spatial visualization in an introductory engineering graphics course using open-ended design projects supported by 3-d printed manipulatives. In ASEE Annual Conference and Exposition, Conference Proceedings, vol. 2016-June. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983339645\&partnerID=40\&md5=f8339ff2d9999a2630b05062b6696447. Gardner, H. (1983). Frames of Mind : the Theory of Multiple Intelligences. New York: Basic Books. Gerson, H.B., Sorby, S.A., Wysocki, A., Baartmans, B.J. (2001). The development and assessment of multimedia software for improving 3-d spatial visualization skills. Computer Applications in Engineering Education, 9(2), 105–113. Gorska, R., & Sorby, S. (2008). Testing instruments for the assessment of 3d spatial skills. In 2008 Annual Conference & Exposition. https://peer.asee.org/4411. ASEE Conferences, Pittsburgh. Guay, R., Purdue Research, F., Educational Testing, S., Test, C. (1976). Purdue Spatial Visualization Test. West Layfette, Ind.: Purdue University. Hartman, N.W., & Bertoline, G.R. (2005). Spatial abilities and virtual technologies: examining the computer graphics learning environment. In Ninth International Conference on Information Visualisation (IV’05). https://doi.org/10.1109/IV.2005.120, (pp. 992–997). Katsioloudis, P., Jovanovic, V., Jones, M. (2014). A comparative analysis of spatial visualization ability and drafting models for industrial and technology education students. Journal of Technology Education, 26(1), 88–101. Kornhaber, M.L., Fierros, E.G., Veenema, S.A. (2004). Multiple Intelligences: Best Ideas from Research and Practice. Boston: Pearson/Allyn and Bacon. https://books.google.com.mx/books?id=ZT8mAQAAIAAJ. Kösa, T., & Karakuş, F. (2018). The effects of computer-aided design software on engineering students’ spatial visualisation skills. European Journal of Engineering Education, 43(2), 296–308. Laxer, C., & Orr, J. (2006). A knowledge base for the emerging discipline of computer graphics”: Report of the siggraph education committee curriculum working group. In Workshop on Computer Graphics Education (CGE’06). ACM, New York. Lohman, D.F. (1996). Spatial Ability and g. In: Dennis, I., & Tapsfield, P. (Eds.) In Human Abilities : Their Nature and Measurement, Chapter 6. Lawrence Erlbaum Associates, Inc., Publishers, London, (pp. 97–115). Lohman, D.F., & Nichols, P.D. (1990). Training spatial abilities: Effects of practice on rotation and synthesis tasks. Learning and Individual Differences, 2(1), 67–93. https://doi.org/10.1016/1041-6080(90)90017-B. Maeda, Y., & Yoon, S.Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the purdue spatial visualization tests: Visualization of rotations (psvt: R). Educational Psychology Review, 25(1), 69–94. Maeda, Y., Yoon, S.Y., Kim-Kang, G., Imbrie, P. (2013). Psychometric properties of the revised psvt: R for measuring first year engineering students’ spatial ability. International Journal of Engineering Education, 29(3), 763–776. Martín-Dorta, N., Saorín, J.L., Contero, M. (2008). Development of a fast remedial course to improve the spatial abilities of engineering students. Journal of Engineering Education, 97(4), 505–513. Melgosa Pedrosa, C., Ramos Barbero, B., Baños García, M.E. (2015). Interactive learning management system to develop spatial visualization abilities. Computer Applications in Engineering Education, 23(2), 203–216. https://doi.org/10.1002/cae.21590. http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21590. Miller, C. (1992). Enhancing visual literacy of engineering students through the use of real and computer generated models. Engineering Design Graphics Journal, 56(1), 27–38. Paquette, E. (2005). Computer graphics education in different curricula: analysis and proposal for courses. Computers and Graphics, 29(2), 245–255. https://doi.org/10.1016/j.cag.2004.12.011. Roid, G.H., & Barram, R.A. (2004). Essentials of Stanford-Binet Intelligence Scales (SB5) Assessment. Hoboken, N.J.: Wiley. Roller, M.A. (2016). A consensus on the definition and knowledge base for computer graphics. West Lafayette: Purdue University. Dissertation. Saorín-Pérez, J.L., Navarro-Trujillo, R.E., Martín-Dorta, N., Martín-Gutiérrez, J., Contero, M. (2009). La capacidad espacial y su relación con la ingeniería. (cover story). DYNA - Ingeniería e Industria, 84(9), 721–732. Schrank, F.A., Decker, S.L., Garruto, J.M. (2016). Essentials of WJ IV Cognitive Abilities Assessment. Hoboken: Wiley. Sorby, S.A. (2005). Assessment of a “new and improved” course for the development of 3-d spatial skills. Engineering Design Graphics Journal, 69(3), 6–13. Sorby, S.A. (2009). Educational research in developing 3-d spatial skills for engineering students. International Journal of Science Education, 31(3), 459–480. https://doi.org/10.1080/09500690802595839. Spearman, C. (1923). The Nature of ’intelligence’ and the Principles of Cognition / by C. Spearman. London: Macmillan. Thurstone, L.L. (1947). Multiple-factor Analysis; a Development and Expansion of The Vectors of the Mind, (p. 535). Chicago, Ill: The University of Chicago Press. Vandenberg, S.G., & Kuse, A.R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604. https://doi.org/10.2466/pms.1978.47.2.599. Wesman, A.G. (1952). The differential aptitude tests. The Personnel and Guidance Journal, 31(3), 167–170. https://doi.org/10.1002/j.2164-4918.1952.tb01429.x. Wolfe, R. (2000). Bringing the introductory computer graphics course into the 21st century. Computers and Graphics, 24(1), 151–155. https://doi.org/10.1016/S0097-8493(99)00145-4. Yue, J. (2006). Spatial visualization by isometric drawing. In Proceedings of the 2006 IJMEINTERTECH Conference, Union, New Jersey. IJME, Northridge. Zimmerman, A.E., & Dean, R.S. (2011). Visual-Spatial Intelligence, (pp. 1548–1549). Boston, MA: Springer. https://doi.org/10.1007/978-0-387-79061-9/_3041. https://doi.org/10.1007/978-0-387-79061-9_3041.