An efficient sequential quadratic programming algorithm for nonlinear programming
Tài liệu tham khảo
Bazaraa, 1979
Birge, 2000, A variant of the Topkis–Veinott method for solving inequality constrained optimization problems, J. Appl. Math. Optim., 41, 309, 10.1007/s002459911015
Boggs, 1995, Sequential Quadratic Programming, 1
Fukushima, 1986, A successive quadratic programming algorithm with global and superlinear convergence properties, Math. Programming, 35, 253, 10.1007/BF01580879
Han, 1976, Superlinearly convergent variable metric algorithm for general nonlinear programming problems, Math. Programming, 11, 263, 10.1007/BF01580395
Hock, 1981
Kostreva, 2000, A superlinearly convergent method of feasible directions, Appl. Math. Comput., 116, 245, 10.1016/S0096-3003(99)00176-9
Lawrence, 1996, Nonlinear equality constraints in feasible sequential quadratic programming, Optim. Methods Softw., 6, 265, 10.1080/10556789608805638
Lawrence, 2001, A computationally efficient feasible sequential quadratic programming algorithm, SIAM J. Optim., 11, 1092, 10.1137/S1052623498344562
Mayne, 1982, A superlinearly convergent algorithm for constrained optimization problems, Math. Programming Study, 16, 45, 10.1007/BFb0120947
Panier, 1987, A superlinearly convergent feasible method for the solution of inequality constrained optimization problems, SIAM J. Control Optim., 25, 934, 10.1137/0325051
Panier, 1988, A QP-free global convergent, locally superlinearly convergent algorithm for inequality constrained optimization, SIAM J. Control Optim., 26, 788, 10.1137/0326046
Powell, 1986, A recursive quadratic programming algorithm that uses differentiable exact penalty function, Math. Programming, 35, 265, 10.1007/BF01580880
Topkis, 1967, On the convergence of some feasible direction algorithms for nonlinear programming, SIAM J. Control, 5, 268, 10.1137/0305018
Zoutendijk, 1960