Một thiết kế phân đoạn protein huyết tương tự động: triển vọng số lượng lớn cho phân tích proteomics

Springer Science and Business Media LLC - Tập 5 - Trang 1-9 - 2012
Claudia Boccardi1,2, Silvia Rocchiccioli3, Antonella Cecchettini1,4, Alberto Mercatanti1, Lorenzo Citti1
1Institute of Clinical Physiology, CNR, Pisa, Italy
2Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
3Institute of Clinical Physiology-CNR, Pisa, Italy
4Department of Human Morphology and Applied Biology, University of Pisa, Italy

Tóm tắt

Huyết tương của con người, đại diện cho bản ghi hoàn chỉnh nhất về kiểu hình cá nhân, là một mẫu thử hấp dẫn cho phân tích proteomics trong các ứng dụng lâm sàng. Đến nay, chướng ngại lớn nhất trong nghiên cứu proteomics huyết tương là dải động lớn của nồng độ protein, và nỗ lực của nhiều nhà nghiên cứu tập trung vào việc giải quyết nhược điểm quan trọng này. Trong nghiên cứu này, các protein từ các mẫu huyết tương gộp đã được phân đoạn theo các đặc điểm hóa học của chúng trên nền tảng SPE tự động do chúng tôi thiết kế. Các phân đoạn thu được đã được tiêu hóa và tiếp tục phân tách bằng phương pháp sắc ký lỏng đảo pha kết hợp với khối phổ MALDI TOF/TOF. Tổng cộng có 712 protein đã được xác định thành công với mức nồng độ đạt được là ng/mL. Hệ số tương quan Pearson đã được sử dụng để kiểm tra tính lặp lại. Phương pháp phân đoạn đa chiều của chúng tôi đã giảm thời gian phân tích (chỉ cần 2 ngày để xử lý 16 mẫu huyết tương trong một tấm 96 giếng) so với các phương pháp truyền thống như điện di gel hoặc phương pháp dựa trên nhiều cột LC. Quá trình tự động hóa, tránh các tác nhân gây ô nhiễm hoặc thiếu kỹ năng xử lý mẫu, hứa hẹn phân tích mẫu khả thi và đáng tin cậy (trên 85% tương quan Pearson). Nền tảng tự động được trình bày ở đây rất linh hoạt và dễ dàng được điều chỉnh thay đổi các yếu tố phân đoạn hoặc cảm biến.

Từ khóa

#huyết tương #phân đoạn protein tự động #proteomics #sắc ký lỏng #khối phổ

Tài liệu tham khảo

Anderson NL, Anderson NG: The human plasma proteome history, character, and diagnostic prospects. Mol Cell Proteomics. 2002, 1: 845-867. 10.1074/mcp.R200007-MCP200. Schiffer E, Mischak H, Novak J: High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics. 2006, 6: 5615-5627. 10.1002/pmic.200600230. Barelli S, Crettaz D, Thadikkaran L, Rubin O, Tissot JD: Plasma/serum proteomics: pre-analytical issues. Exp Rev Proteomics. 2007, 4: 363-370. 10.1586/14789450.4.3.363. Tucholska M: Human serum proteins fractionated by preparative partition chromatography prior to LC-ESI-MS/MS. J Proteome Res. 2009, 8 (3): 1143-1155. 10.1021/pr8005217. Aresta A: Impact of sample preparation in peptide/protein profiling in human serum by MALDI-TOF mass spectrometry. J Pharm Bio Anal. 2008, 46: 157-164. 10.1016/j.jpba.2007.10.015. Linke T, Doraiswamy S, Harrison EH: Rat plasma proteomics: effects of abundant protein depletion on proteomic analysis. J Chromatogr B. 2007, 849: 273-281. 10.1016/j.jchromb.2006.11.051. Hinerfeld D, Innamorati D, Pirro J, Tam SW: Serum/Plasma depletion with chicken immunoglobulin Y antibodies for proteomic analysis from multiple mammalian species. J Biomol Tech. 2004, 15: 184-190. Govorukhina NI: Analysis of human serum by liquid chromatography-mass spectrometry: improved sample preparation and data analysis. J Chromatogr A. 2006, 1120: 142-150. 10.1016/j.chroma.2006.02.088. Rai AJ, Gelfand CA, Haywood BC, Warunek DJ, Yi J, Schuchard MD, Mehigh RJ, Cockrill SL, Scott GB, Tammen H, Schulz-Knappe P, Speicher DW, Vitzthum F, Haab BB, Siest G, Chan DW: HUPO Plasma Proteome Project specimen collection and handling: Towards the standardization of parameters for plasma proteome samples. Proteomics. 2005, 5: 3262-3277. 10.1002/pmic.200401245. Tammen H: Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics. 2005, 5: 3414-3422. 10.1002/pmic.200401219. Omenn GS, States DJ, Adamski M, Blackwell TW: Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005, 5: 3226-3245. 10.1002/pmic.200500358. Reymond MA, Schlegel W: Proteomics in cancer. Adv Clin Chem. 2007, 44: 103-142. Metz TO, Jacobs JM, Gritsenko MA, Fontès G, Qian WJ, Camp DG, Poitout V, Smith RD: Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol Cell Proteomics. 2006, 5: 1727-1744. 10.1074/mcp.M600162-MCP200. Mischak H, Apweiler R, Banks RE, Conaway M: Clinical proteomics: A need to define the field and to begin to set adequate standards. Proteomics Clin Appl. 2007, 1: 148-156. 10.1002/prca.200600771. Wang H, Kachman MT, Schwartz DR, Cho KR: Comprehensive proteome analysis of ovarian cancers using liquid phase separation, mass mapping and tandem mass spectrometry: A strategy for identification of candidate cancer biomarkers. Proteomics. 2004, 4: 2476-2495. 10.1002/pmic.200300763. Kaplan A, Soderstrom M, Fenyo D, Nilsson A: An automated method for scanning LC-MS data sets for significant peptides and proteins, including quantitative profiling and interactive confirmation. J Proteome Res. 2007, 6: 2888-2895. 10.1021/pr060676e. Baumann S, Ceglarek U, Fiedler GM, Lembcke J: Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem. 2005, 51: 973-980. 10.1373/clinchem.2004.047308. De Noo ME, Tollenaar RA, Ozalp A, Kuppen PJ: Reliability of human serum protein profiles generated with C8 magnetic beads assisted MALDI-TOF mass spectrometry. Anal Chem. 2005, 77: 7232-7241. 10.1021/ac050571f. Callesen AK, Christensen R, Madsen JS, Vach W: Reproducibility of serum protein profiling by systematic assessment using solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22: 291-300. 10.1002/rcm.3364. Callesen AK, Madsen JS, Vach W, Kruse TA, Mogensen O, Jensen ON: Serum protein profiling by solid phase extraction and mass spectrometry: A future diagnostics tool?. Proteomics. 2009, 9: 1428-1441. 10.1002/pmic.200800382. Li L, Tang H, Wu Z, Gong J: Data mining techniques for cancer detection using serum proteomic profiling. Artif Intell Med. 2004, 32: 71-83. 10.1016/j.artmed.2004.03.006. Simonsen AH, McGuire J, Podust VN, Davies H: Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiol Aging. 2007, 29: 961-968. Villanueva J, Shaffer DR, Philip J, Chaparro CA: Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest. 2006, 116: 271-284. Léonard JF, Courcol M, Gautier JC: Optimization of SELDI for biomarker detection in plasma. Methods Mol Biol. 2011, 691: 351-368. 10.1007/978-1-60761-849-2_22. Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD: SELDI-TOF MS for diagnostic proteomics. Anal Chem. 2003, 75: 148A-155A. Tanaka Y: A novel approach and protocol for discovering extremely low-abundance proteins in serum. Proteomics. 2006, 6: 4845-4855. 10.1002/pmic.200500774. Tirumalai RS: Characterization of the Low molecular weight human serum proteome. Mol Cell Proteomics. 2003, 2: 1096-1103. 10.1074/mcp.M300031-MCP200. Zolotarjova N: Differences among techniques for high-abundant protein depletion. Proteomics. 2005, 5: 3304-3313. 10.1002/pmic.200402021. Ichibangase T, Moriya K, Koike K, Imai K: Limitation of immunoaffinity column for the removal of abundant proteins from plasma in quantitative plasma proteomics. Biomed Chromatogr. 2008, 23: 280-487. Liu X, Valentine SJ, Plasencia MD, Trimpin S, Naylor S, Clemmer DE: Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom. 2007, 18: 1249-1264. 10.1016/j.jasms.2007.04.012. Hattan SJ, Parker KC: Methodology utilizing MS signal intensity and LC retention time for quantitative analysis and precursor ion selection in proteomic LC-MALDI analyses. Anal Chem. 2006, 78: 7986-7996. 10.1021/ac0610513. Rocchiccioli S, Citti L, Boccardi C, Ucciferri N, Tedeschi L, Lande C, Trivella MG, Cecchettini A: A gel-free approach in vascular smooth muscle cell proteome: perspectives for a better insight into activation. Proteome Sci. 2010, 8: 8-10.1186/1477-5956-8-8. Wu J, Lin Q, Lim TK, Liu T, Hew CL: White spot syndrome virus proteins and differentially expressed host proteins identified in shrimp epithelium by shotgun proteomics and cleavable isotope-coded affinity Tag. J Virol. 2010, 81: 11681-11689.