An assessment on the role of endophytic microbes in the therapeutic potential of Fagonia indica

Springer Science and Business Media LLC - Tập 16 - Trang 1-12 - 2017
Lubna Rahman1, Zabta K. Shinwari1,2, Irum Iqrar1, Lutfur Rahman1, Faouzia Tanveer1
1Molecular Systematics and Applied Ethno Botany Lab (MoSEL), Department of Biotechnology, Quaid I Azam University, Islamabad, Pakistan
2Pakistan Academy of Sciences, Islamabad, Pakistan

Tóm tắt

Natural products of animals, plants and microbes are potential source of important chemical compounds, with diverse applications including therapeutics. Endophytic bacteria that are especially associated with medicinal plants presents a reservoir of therapeutic compounds. Fagonia indica has been recently investigated by numerous researchers because of its striking therapeutic potential especially in cancer. It is also reported that endophytes play a vital role in the biosynthesis of various metabolites; therefore we believe that endophytes associated with F. indica are of crucial importance in this regard. The present study aims successful isolation, molecular identification of endophytic bacteria and their screening for bioactive metabolites quantification and in vitro pharmacological activities. 16S rRNA gene sequencing was used for the identification of isolated endophytic bacteria. Methanolic extracts were evaluated for total phenolic contents (TPC), total flavonoids contents (TFC), DPPH free radical scavenging activity, reducing power and total anti-oxidant assays were performed. And also screened for antibacterial and antifungal activities by disc diffusion method and their MIC were calculated by broth dilution method using microplate reader. Further, standard protocols were followed for antileishmanial activity and protein kinase inhibition. Analysis and statistics were performed using SPSS, Table curve and Origin 8.5 for graphs. Bacterial strains belonging to various genera (Bacillus, Enterobacter, Pantoea, Erwinia and Stenotrophomonas) were isolated and identified. Total phenolic contents and total flavonoids contents varies among all the bacterial extracts respectively in which Bacillus subtilis showed high phenolic contents 243 µg/mg of gallic acid equivalents (GAE) and Stenotrophomonas maltophilia showed high flavonoids contents 15.9 µg/mg quercitin equivalents (QA), total antioxidant capacity (TAC) 37.6 µg/mg of extract, reducing power (RP) 206 µg/mg of extract and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity with 98.7 μg/mL IC50 value. Although all the extracts tested were active to inhibit growth of selected pathogenic microbes (bacteria and fungi), but significant antibacterial activity was observed against Klebsiella pneumonia and B. subtilis. An Enterobacter cloaca was active against Leishmania tropica with IC50 value of 1.4 µg/mg extracts. B. subtilis and Bacillus tequilensis correspondingly exhibit significant protein kinase inhibition of 47 ± 0.72 and 42 ± 1.21 mm bald zones, indicating anti-infective and antitumor potential. Our findings revealed that crude extracts of selected endophytic bacteria from F. indica possess excellent biological activities indicating their potential as an important source of antibiotics (antifungal, antibacterial) compounds.

Tài liệu tham khảo

Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Alabdullatif ZN, Assad M, Almulhim A, Makhdoom H. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369(5):407–16. Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot. 2012;65(8):385–95. Suryanarayanan T, Thirunavukkarasu N, Govindarajulu M, Sasse F, Jansen R, Murali T. Fungal endophytes and bioprospecting. Fungal Biol Rev. 2009;23(1):9–19. Owen NL, Hundley N. Endophytes—the chemical synthesizers inside plants. Sci Prog. 2004;87(2):79–99. Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67(4):491–502. Anil P, Nikhil B, Manoj G, Prakash N. Phytochemicals and biological activities of Fagonia indica. Int Res J Pharm. 2012;3:56–9. Waheed A, Barker J, Barton SJ, Owen CP, Ahmed S, Carew MA. A novel steroidal saponin glycoside from Fagonia indica induces cell-selective apoptosis or necrosis in cancer cells. Eur J Pharm Sci. 2012;47(2):464–73. Singh V, Pandey R. Ethnobotany of Rajasthan. Jodhpur: Scientific Publishers; 1998. Petrini O. Taxonomy of endophytic fungi of aerial plant tissues. Microbiology of the phyllosphere. In: Fokkema NJ, van den Heuvel J, editors; 1986. Afzal I, Shinwari ZK, Iqrar I. Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using Canola. Pak J Bot. 2015;47(5):1999–2008. Shweta S, Zuehlke S, Ramesha B, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry. 2010;71(1):117–22. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin J-C, Bailleul F, Trotin F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 2000;72(1):35–42. Jagadish LK, Krishnan VV, Shenbhagaraman R, Kaviyarasan V. Comparitive study on the antioxidant, anticancer and antimicrobial property of Agaricus bisporus (JE Lange) Imbach before and after boiling. Afr J Biotechnol. 2009;8:4. Tai Z, Cai L, Dai L, Dong L, Wang M, Yang Y, Ding Z. Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia. Food Chem. 2011;126(4):1648–54. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337–41. Jafri L, Saleem S, Ullah N, Mirza B. In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch. Arab J Chem. 2014. Oyaizu M. Studies on products of browning reaction–antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr. 1986;44:6. Lai HY, Lim YY, Tan SP. Antioxidative, tyrosinase inhibiting and antibacterial activities of leaf extracts from medicinal ferns. Biosci Biotechnol Biochem. 2009;73(6):1362–6. Gao J, Radwan MM, León F, Wang X, Jacob MR, Tekwani BL, Khan SI, Lupien S, Hill RA, Dugan FM. Antimicrobial and antiprotozoal activities of secondary metabolites from the fungus Eurotium repens. Med Chem Res. 2012;21(10):3080–6. Sultanbawa Y, Cusack A, Currie M, Davis C. An innovative microplate assay to facilitate the detection of antimicrobial activity in plant extracts. J Rapid Methods Autom Microbiol. 2009;17(4):519–34. Ma G, Khan SI, Jacob MR, Tekwani BL, Li Z, Pasco DS, Walker LA, Khan IA. Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrob Agents Chemother. 2004;48(11):4450–2. Yao G, Sebisubi FM, Voo LYC, Ho CC, Tan GT, Chang LC. Citrinin derivatives from the soil filamentous fungus Penicillium sp. H9318. J Braz Chem Soc. 2011;22(6):1125–9. Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea J-M. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol. 2010;45(3):209–17. Langseth L. From the editor: antioxidants and diseases of the brain. Antioxid Vitam Newslett. 1993;4:3. Gülçin İ, Alici HA, Cesur M. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem Pharm Bull. 2005;53(3):281–5. Maisuthisakul P, Suttajit M, Pongsawatmanit R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 2007;100(4):1409–18. Nongkhlaw FM, Joshi SR. Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J Infect Dev Ctries. 2015;9(09):954–61. Abdel-Hameed ESS. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chem. 2009;114(4):1271–7. Singh N, Rajini P. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 2004;85(4):611–6. Rafat A, Philip K, Muniandy S. A novel source of bioactive compounds: endophytic bacteria isolated from Centella asiatica. J Pure Appl Microbiol. 2012;6(1):1. Swarnalatha Y, Saha B, Choudary L. Bioactive compound analysis and antioxidant activity of endophytic bacterial extract from Adhathoda beddomei. Asian J Pharm Clin Res. 2015;8:70–2. Kostova I, Bhatia S, Grigorov P, Balkansky S, Parmar SV, Prasad KA, Saso L. Coumarins as antioxidants. Curr Med Chem. 2011;18(25):3929–51. Jalgaonwala RE, Mahajan RT. Isolation and characterization of endophytic bacterial flora from some Indian medicinal plants. Asian J Res Chem. 2011;4(2):56. Sun H, He Y, Xiao Q, Ye R, Tian Y. Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr J Microbiol Res. 2013;7(16):1496–504. Ashford R. The leishmaniases as model zoonoses. Ann Trop Med Parasitol. 1997;91(7):693–702. Kassi M, Kasi PM, Marri SM, Tareen I, Khawar T. Vector control in cutaneous leishmaniasis of the old world: a review of literature. Dermatol Online J. 2008;14(6):1. Fatima H, Khan K, Zia M, Ur-Rehman T, Mirza B, Haq IU. Extraction optimization of medicinally important metabolites from Datura innoxia Mill: an in vitro biological and phytochemical investigation. BMC Complement Altern Med. 2015;15(1):376. Barbara W, Saxena G, Wanggui Y, Kau D, Wrigley S, Stokes R. Identifying protein kinase inhibitors using an assay based on inhibition of aerial hyphae formation in streptomyces. J Antibiot. 2002;55(4):407–16. Kluge B, Vater J, Salnikow J, Eckart K. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett. 1988;231(1):107–10.