An assessment of the interoperability of PPP-AR network products
Tóm tắt
Integer ambiguity resolution of carrier-phase measurements from a single receiver can be implemented by applying additional satellite corrections (products) to mitigate unmodelled satellite equipment delays. Interoperability of different PPP-AR products would allow the PPP user to transform independently generated PPP-AR products to obtain multiple fixed solutions of comparable precision and accuracy with limited changes required to user PPP measurement processing software. The ability to provide multiple solutions would increase the reliability of the solution for, e.g., real-time processing; if there were an outage in the generation of one set of PPP-AR products, the user could instantly switch streams to a different provider. There are currently three main public providers of real-time products that enable PPP-AR. These include School of Geodesy and Geomatics at Wuhan University (SGG-WHU), Natural Resources Canada (NRCan) and Centre National d’Etudes Spatiales (CNES). The presented research examines the PPP-AR products generated from the FCB (Fractional Cycle Bias) model and IRC (Integer Recovery Clock) model that have been transformed into the DC (Decoupled Clock) format and applied within the PPP user solution. Interoperability of the different PPP-AR products is a challenging task due to the public availability of different quality of products, limited literature documenting the conventions adopted within the network solution of the providers and unclear definitions of the corrections. The novelty of the research is in the analysis of using the transformed products. The convergence time (time to first fix and time to a pre-defined performance level), position precision (repeatability), position accuracy and solution outliers are examined. Equivalent performance was noted utilizing the different methods. Of the four solutions, FCB products had the highest accuracy. This is attributed to the products being generated using final IGS orbit and clock products. To confirm this, FCBs generated using GRG orbit and clock products were also examined and comparable performance was observed between the FCBs and IRC (GRG) products. The least accurate solution was obtained using the IRC (CNT) products, which was due to the products being archived real time products.
Tài liệu tham khảo
Aggrey JE (2015) Multi-GNSS precise point positioning software architecture and analysis of GLONASS pseudorange biases. York University, Toronto
Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70:714–723
Bertiger W, Desai SD, Haines B et al (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84:327–337. doi: 10.1007/s00190-010-0371-9
CNES (2015) Le site du Centre national d’études spatiales. https://cnes.fr/
Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proc. ION NTM. pp 720–732
Collins P, Bisnath S (2011) Issues in ambiguity resolution for precise point positioning. In: proceedings of the 24th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2011). pp 679–687
Collins P, Bisnath S, Lahaye F, Héroux P (2010) Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation 57:123–135
Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2008). pp 1315–1322.
Dilssner F (2010) GPS IIF-1 satellite antenna phase center and attitude modeling. GNSS 5:59–64
Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47:160–171. doi: 10.1016/j.asr.2010.09.007
Ge M, Gendt G, Rothacher M et al (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82:389–399. doi: 10.1007/s00190-007-0187-4
Geng J (2010) Rapid integer ambiguity resolution in GPS precise point positioning. University of Nottingham
Geng J, Meng X, Dodson AH, Teferle FN (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geod 84:569–581. doi: 10.1007/s00190-010-0399-x
Geng J, Shi C, Ge M et al (2012) Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. J Geod 86:579–589
Geng J, Teferle FN, Shi C et al (2009) Ambiguity resolution in precise point positioning with hourly data. GPS Solut 13:263–270. doi: 10.1007/s10291-009-0119-2
Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13:1–12. doi: 10.1007/s10291-008-0092-1
Kuang D, Desai S, Sibois A (2016) Observed features of GPS block IIF satellite yaw maneuvers and corresponding modeling. GPS Solut. doi: 10.1007/s10291-016-0562-9
Lannes A, Prieur J-L (2013) Calibration of the clock-phase biases of GNSS networks: the closure-ambiguity approach. J Geod 87:709–731. doi: 10.1007/s00190-013-0641-4
Laurichesse D (2014) Phase biases for ambiguity resolution: from an undifferenced to an uncombined formulation, http://ppp-wizard.net/Articles/WhitePaperL5.pdf, Accessed 2 Jun 2015
Laurichesse D, Mercier F (2007) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. pp 839–848
Laurichesse D, Mercier F, Berthias J-P et al (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56:135–149
Li P, Zhang X, Ren X, et al (2015) Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS Solut doi: 10.1007/s10291-015-0483-z
Mercier F, Laurichesse D (2007) receiver/payload hardware biases stability requirements for undifferenced Widelane ambiguity blocking. In: Scientifics and fundamental aspects of the Galileo program Colloquium, Fall 2007
Mervart L, Lukes Z, Rocken C, Iwabuchi T (2008) Precise point positioning with ambiguity resolution in real-time. In: Proceedings of ION GNSS. pp 397–405
Montenbruck O, Schmid R, Mercier F et al (2015) GNSS satellite geometry and attitude models. Adv Space Res 56:1015–1029. doi: 10.1016/j.asr.2015.06.019
NRCan (2015) Natural Resources Canada. https://www.nrcan.gc.ca. Accessed 19 Jun 2015
Schaer S (2016) SINEX BIAS - solution (software/technique) independent exchange format for GNSS BIASes
Scherneck H (2013) Ocean Tide Loading Provider. http://holt.oso.chalmers.se/loading/. Accessed 2 Jan 2013
Seepersad G (2012) Reduction of initial convergence period in GPS PPP data processing. York University, Toronto
Seepersad G, Banville S, Collins P, et al (2016) Integer satellite clock combination for Precise Point Positioning with ambiguity resolution. In: Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR
Shi J, Gao Y (2013) A comparison of three PPP integer ambiguity resolution methods. GPS Solut 18:519–528. doi: 10.1007/s10291-013-0348-2
Shi J, Gao Y (2014) A troposphere constraint method to improve PPP ambiguity-resolved height solution. J Navig 67:249–262. doi: 10.1017/S0373463313000647
Teunissen PJ, Odijk D, Zhang B (2010) PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution. J Aeronaut Astronaut Aviat Ser A 42:223–230
Teunissen PJG, Khodabandeh A (2015) Review and principles of PPP-RTK methods. J Geod 89:217–240. doi: 10.1007/s00190-014-0771-3
Wuhan University (2017) School Of Geodesy and Geomatics,Wuhan University. In: Wuhan Univ. http://en.sgg.whu.edu.cn/. Accessed 19 Aug 2017
Zhang B, Teunissen PJG, Odijk D (2011) A novel un-differenced PPP-RTK concept. J Navig 64:S180–S191. doi: 10.1017/S0373463311000361