An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender
Tóm tắt
One of the difficulties for the implementation of Brain-Computer Interface (BCI) systems for motor impaired patients is the time consumed in the system design process, since patients do not have the adequate physical nor psychological conditions to complete the process. For this reason most of BCIs are designed in a subject-dependent approach using data of healthy subjects. The developing of subject-independent systems is an option to decrease the required training sessions to design a BCI with patient functionality. This paper presents a proof-of-concept study to evaluate subject-independent system based on hand motor imagery taking gender into account. Subject-Independent BCIs are proposed using Common Spatial Patterns and log variance features of two groups of healthy subjects; one of the groups was composed by people of male gender and the other one by people of female gender. The performance of the developed gender-specific BCI designs was evaluated with respect to a subject-independent BCI designed without taking gender into account, and afterwards its performance was evaluated with data of two healthy subjects that were not included in the initial sample. As an additional test to probe the potential use for subcortical stroke patients we applied the methodology to two patients with right hand weakness. T-test was employed to determine the significance of the difference between traditional approach and the proposed gender-specific approach. For most of the tested conditions, the gender-specific BCIs have a statistically significant better performance than those that did not take gender into account. It was also observed that with a BCI designed with log-variance features in the alpha and beta band of healthy subjects’ data, it was possible to classify hand motor imagery of subcortical stroke patients above the practical level of chance. A larger subjects’ sample test may be necessary to improve the performances of the gender-specific BCIs and to further test this methodology on different patients. The reduction of complexity in the implementation of BCI systems could bring these systems closer to applications such as controlling devices for the motor rehabilitation of stroke patients, and therefore, contribute to a more effective neurological rehabilitation.
Tài liệu tham khảo
Friedrich EV, Scherer R, Neuper C: Long-term evaluation of 4-class imagery-based brain-computer interface. Clin Neurophysiol 2013, 124: 916–927. 10.1016/j.clinph.2012.11.010
Hazrati MK, Erfanian A: An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network. Med Eng Phys 2010, 32: 730–739. 10.1016/j.medengphy.2010.04.016
Kus R, Valbuena D, Malechka T, Graeser A, Durka P: Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training. IEEE Trans Neural Syst Rehabil Eng 2013,20(6):823–835.
Chih-Wei C, Chou-Ching KL, Ming-Shaung J: Hand orthosis controlled using brain-computer interface. J Med Biol Eng 2009,29(5):234–241.
Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G: Brain-computer interfaces for communication and control. Clin Neurophysiol 2002,113(6):767–791. 10.1016/S1388-2457(02)00057-3
Pfurtscheller G, Neuper C: Motor imagery and direct brain-computer communication. Proc IEEE 2001,89(7):1123–1134. 10.1109/5.939829
Ang KK, Chin ZY, Wang C, Guan C, Zhang H: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 2012, 6: 39.
Lotte F, Guan C, Ang KK: Comparison of Designs Towards a Subject-Independent Brain-Computer Interface based on Motor Imagery. Proceedings of the 31st IEEE EMBC 2009, 4543–4645.
Fazli S, Popescu F, Danóczy M, Blankertz B, Müller K-R, Grozea C: Subject-independent mental state classification in single trials. Neural Netw 2009, 22: 1305–1312. 10.1016/j.neunet.2009.06.003
Lotte F, Guan C: Learning from Other Subjects Helps Reducing Brain-Computer Interface Calibration Time. Proceedings of the IEEE ICASSP 2010, 614–617.
Ang KK, Guan C, Chua KSG, Ang BT, Kuah CW, Wang C, Phua KS, Chin ZY, Zhang H: A large clinical study on the ability of stroke patients to Use an EEG-based motor imagery brain computer interface. Clin EEG Neurosci 2011,42(4):253–258. 10.1177/155005941104200411
Prasad G, Herman P, Coyle D, McDonough S, Crosbie J: Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil 2010,7(60):17.
Cantillo-Negrete J, Gutierrez-Martinez J, Carino-Escobar RI, Flores-Rodriguez TB, Elias-Vinas D: Time-Frequency Analysis of EEG Signals from Healthy Subjects Allocated by Gender for a Subject-Independent BCI-Based on Motor Imagery. 6th International IEEE/EMBS Conference on Neural Engineering (NER): 6–8 November 2013; San Diego CA 2013, 37–40.
Birbaumer N: Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 2006,43(6):517–532. 10.1111/j.1469-8986.2006.00456.x
Ostrosky-Solis F, Gómez-Pérez E, Ardila A, Rosselli M, Matute E, Pineda D, Lopera F: Batería Neuropsicológica NEUROPSI Atención y Memoria, 6 a 85 años de edad. Mexico: Bookstore; 2003.
Cantillo-Negrete J, Gutiérrez-Martínez J, Cariño-Escobar RI, Elías-Viñas D: Module to Present and Identify Motor Imagery Tasks in Electroencephalography. In Proccedings of the VIII Pan American Health Care Exchanges Conference (PAHCE):29 April-04 May 2013. Medellin, Colombia: Published by IEEE; 2013.
Bertrand O, Perrin F, Pernier J: A theoretical justification of the average reference in topographic evoked potential studies. Electroenc Clin Neurophysiol 1985, 62: 462–464. 10.1016/0168-5597(85)90058-9
Guger C, Ramoser H, Pfurtscheller G: Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI). IEEE Trans Rehab Eng 2000, 8: 447–456. 10.1109/86.895947
Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M: EEG-based discrimination between imagination of right and left hand movement. Electroenc Clin Neurophys 1997,103(5):1–10.
Oostenveld R, Fries P, Eric M, Schoffelen J-M: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011, 2011: 156869.
Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J: Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci 1997,17(2):722–734.
Cantillo-Negrete J, Gutiérrez-Martínez J, Flores-Rodríguez TB, Cariño-Escobar RI, Elías-Viñas D: Characterization of electrical brain activity related to hand motor imagery in healthy subjects. Rev Invest Clin 2014,66(S1):s111-s121.
Müller-Gerkinga J, Pfurtscheller G, Flyvbjergc H: Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol 1999, 110: 787–798. 10.1016/S1388-2457(98)00038-8
Ramoser H, Muller-Gerking J, Pfurtscheller G: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 2000,8(4):441–446. 10.1109/86.895946
Bashashati A, Fatourechi M, Ward RK, Birch GE: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng 2007,4(2):R32-R57. 10.1088/1741-2560/4/2/R03
Müller-Putz JR, Scherer R, Brunner C, Leeb R, Pfurtscheller G: Better than random? A closer look on BCI results. Int J Bioelectromagn 2008, 10: 52–55.
Sharma N, Simmons LH, Jones PS, Day DJ, Carpenter TA, Pomeroy VM, Warburton EA, Baron JC: Motor imagery after subcortical stroke: A Functional Magnetic Resonance Imaging study. Stroke 2009, 40: 1315–1324. 10.1161/STROKEAHA.108.525766
García Carrasco D, Aboitiz Cantalapiedra J: Efectividad de la imaginería o practica mental en la recuperación funcional tras el ictus: revisión sistemática. Neurologia ᅟ, ᅟ: ᅟ. in press
Dickstein R, Deutsch JE, Yoeli Y, Kafri M, Falash F, Dunsky A, Eshet A, Alexander N: Effects of integrated motor imagery practice on gait of individuals with chronic stroke: a half-crossover randomized study. Arch Phys Med Rehabil 2013, 94: 2119–2125. 10.1016/j.apmr.2013.06.031