An analysis of two classes of phase field models for void growth and coarsening in irradiated crystalline solids

Materials Theory - Tập 2 - Trang 1-36 - 2018
K. Ahmed1,2, A. El-Azab3
1School of Nuclear Engineering, Purdue University, West Lafayette, USA
2Present address: Department of Nuclear Engineering, Texas A&M University, College Station, USA
3School of Materials Engineering, Purdue University, West Lafayette, USA

Tóm tắt

A formal asymptotic analysis of two classes of phase field models for void growth and coarsening in irradiated solids has been performed to assess their sharp-interface kinetics. It was found that the sharp interface limit of type B models, which include only point defect concentrations as order parameters governed by Cahn-Hilliard equations, captures diffusion-controlled kinetics. It was also found that a type B model reduces to a generalized one-sided classical Stefan problem in the case of a high driving thermodynamic force associated with the void growth stage, while it reduces to a generalized one-sided Mullins-Sekerka problem when the driving force is low in the case of void coarsening. The latter case corresponds to the famous rate theory description of void growth. Type C models, which include point defect concentrations and a non-conserved order parameter to distinguish between the void and solid phases and employ coupled Cahn-Hilliard and Allen-Cahn equations, are shown to represent mixed diffusion and interfacial kinetics. In particular, the Allen-Cahn equation of model C reduces to an interfacial constitutive law representing the attachment and emission kinetics of point defects at the void surface. In the limit of a high driving force associated with the void growth stage, a type C model reduces to a generalized one-sided Stefan problem with kinetic drag. In the limit of low driving forces characterizing the void coarsening stage, however, the model reduces to a generalized one-sided Mullins-Sekerka problem with kinetic drag. The analysis presented here paves the way for constructing quantitative phase field models for the irradiation-driven nucleation and growth of voids in crystalline solids by matching these models to a recently developed sharp interface theory.

Tài liệu tham khảo

K Ahmed, T Allen, A El-Azab, J. Mater. Sci. 51, 1261 (2016) K Ahmed, M Tonks, Y Zhang, B Biner, A El-Azab, Comput. Mater. Sci. 134, 25 (2017) SM Allen, JW Cahn, Acta Metall. 27, 1085 (1979) L Amirouche, M Plapp, Acta Mater. 57, 237 (2009) Z Bi, R Sekerka, Physica A 261, 95 (1998) K Binder, Rep. Prog. Phys. 50, 783 (1987) A Brailsford, R Bullough, J. Nucl. Mater. 44, 121 (1972) AJ Bray, Adv. Phys. 43, 357 (1994) G Caginalp, Phys. Rev. A 39, 5887 (1989) JW Cahn, Acta Metall. 9, 795 (1961) JW Cahn, JE Hilliard, J. Chem. Phys. 28, 258 (1958) S Dai, Q Du, SIAM Appl. Math. 72, 1818 (2012) S Dai, B Niethammer, RL Pego, Proc. Roy. Soc. Edinburgh A140, 553 (2010) S De Groot, P Mazur, Non-Equilibrium Thermodynamics (North-Holland Publishing Company, Amsterdam, 1962) VI Dubinko, PN Ostapchuk, VV Slezov, J. Nucl. Mater. 161, 239 (1989) A El-Azab, K Ahmed, S Rokkam, T Hochrainer, Curr. Opin. Solid State Mater. Sci. 18, 90 (2014) K Elder, M Grant, N Provatas, JM Kosterlitz, Phys. Rev. E 64, 021604 (2001) H Emmerich, Adv. Phys. 57, 1 (2008) PC Fife, Dynamics of Internal Layers and Diffuse Interfaces (SIAM, Philadelphia, 1992) H Garcke, B Nestler, B Stinner, SIAM Appl. Math. 64, 775 (2004) V Ginzburg, L Landau, Sov. Phys. JETP 20, 1064 (1950) T Hochrainer, A El-Azab, Phil. Mag. 95, 948 (2015) PC Hohenberg, BI Halperin, Rev. Mod. Phys. 49, 435 (1977) S Hu, C Henager, H Heinisch, M Stan, M Baskes, S Valone, J. Nucl. Mater. 392, 292 (2009) S Hu, H Henager, J. Nucl. Mater. 394, 155 (2009) S Hu, H Henager, Acta Mater. 58, 3230 (2010) J Katz, H Wiedersich, J. Chem. Phys. 55, 1414 (1971) J Kockelkoren, H Chaté, Physica D 168-169, 80 (2002) K Krishan, Radiat. Eff. 66, 121 (1982) JS Langer, Rev. Mod. Phys. 52, 1 (1980) Y Li, S Hu, R Montgomery, F Gao, X Sun, Nucl. Instr. Meth. in Phys. Res B 303, 62 (2013) Y Li, S Hu, X Sun, F Gao, H Henager, M Khaleel, J. Nucl. Mater. 407, 119 (2010) I Lifshitz, V Slyozov, J. Phys. Chem. Solids 19, 35 (1961) R Mayer, L Brown, J. Nucl. Mater. 95, 58 (1980) P Millet, M Tonks, Curr. Opin. Solid State Mater. Sci. 15, 125 (2011a) P Millett, A El-Azab, S Rokkam, M Tonks, D Wolf, Comput. Mater. Sci. 50, 949 (2011b) P Millett, A El-Azab, D Wolf, Comput. Mater. Sci. 50, 960 (2011c) P Millett, S Rokkam, A El-Azab, M Tonks, D Wolf, Mod. Sim. Mater. Sci. Eng. 17, 064003 (2009) W Mullins, R Sekerka, J. Appl. Phys. 34, 323 (1963) B Niethammer, Proc. R. Soc. Edinb. A130, 1337 (2000) D Olander, Fundamental Aspects of Nuclear Reactor Fuel Element (Technical Information Service, Springfield, VA, 1976) RL Pego, Proc. Roy. Soc. London. Ser. A. 422, 261 (1989) N Provatas, K Elder, Phase-Field Methods in Materials Science and Engineering (Wily-VCH, Weinheim, Germany, 2010) M Rahaman, Ceramic Processing and Sintering (Marcel Dekker, New York, 2003) S Rokkam, A El-Azab, P Millett, D Wolf, Mod. Sim. Mater. Sci. Eng. 17, 064002 (2009) K Russell, Acta Metall. 19, 753 (1971) A Semenov, C Woo, Acta Mater. 60, 6112 (2012) G Was, Fundamentals of Radiation Materials Science-Metals and Alloys (Springer, Berlin, 2017) Z Xiao, A Semenov, C Woo, SQ Shi, J. Nucl. Mater. 439, 25 (2013) H Yu, W Lu, Acta Mater. 53, 1799 (2005)