An alternative data analytic approach to measure the univariate and multivariate skewness

Ravindra Khattree1, Manoj Bahuguna2
1Department of Mathematics and Statistics, and Center for Data Science and Big Data Analytics, Oakland University, Rochester, USA
2Department of Mathematics and Statistics, Oakland University, Rochester, USA

Tóm tắt

We introduce a new measure of univariate skewness of a distribution or data based on quantiles and by using the concepts of even and odd functions. Based on this new measure, we then suggest an approach to define the multivariate skewness for the multivariate distributions and multidimensional data and accordingly suggest a measure for it. Using numerous data sets, we illustrate that Mardia’s measure of multivariate skewness appears to be ambiguous in what it actually measures and show that our measure not only has an intuitive appeal, it also unambiguously quantifies what one would view as the multivariate skewness. Approach presented here is data analytic and can be implemented on a computer. Based on the idea of orthogonal transformation of the data, we also suggest another multivariate measure of skewness which may be simpler to compute.

Tài liệu tham khảo

Baringhaus, L., Henze, N.: Limit distributions for measures of multivariate skewness and kurtosis based on projections. J. Multivar. Anal. 38(1), 51–69 (1991) Benjamini, Y., Krieger, A.M.: Skewness: Concepts and Measures Encyclopedia of Statistical Sciences. Wiley Online Library, Hoboken (2006) Bowley, A.L.: Elements of Statistics, vol. 2. P. S. King, Westminster (1920) Brown, C.A., Robinson, D.M.: Skewness and kurtosis implied by option prices: a correction. J. Financ. Res. 25(2), 279–282 (2002) Chatterjee, S., Hadi, A.S., Price, B.: Regression Analysis by Example. Wiley, Hoboken (2000) Chvosta, J., Erdman, D.J., Little, M.: Modeling financial risk factor correlation with the copula procedure. In: SAS Global Forum, pp. 340–2011 (2011) Corrado, C.J., Su, T.: Skewness and kurtosis in S&P 500 index returns implied by option prices. J. Financ. Res. XIX(2), 175–192 (1996) Flurry, B., Riedwyl, H.: Multivariate Statistics: A Practical Approach. Chapman and Hall, London (1988) Groeneveld, R.A.: Skewness, Bowley’s Measures of Encyclopedia of Statistical Sciences. Wiley Online Library, Hoboken (2006) Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. Statistician 33, 391–399 (1984) Harvey, C.R., Siddique, A.: Conditional skewness in asset pricing tests. J. Finance 55(3), 1263–1295 (2000a) Harvey, C.R., Siddique, A.: Time-varying conditional skewness and the market risk premium. Res. Bank. Finance 1(1), 27–60 (2000b) Hinkley, D.V.: On power transformations to symmetry. Biometrika 62(1), 101–111 (1975) Joanes, D.N., Gill, C.A.: Comparing measures of sample skewness and kurtosis. J. R. Stat. Soc. Ser. D (Statistician) 47(1), 183–189 (1998) Khattree, R., Naik, D.N.: Multivariate Data Reduction and Discrimination with SAS Software. SAS Institute Inc, Cary (2000) Kim, T.H., White, H.: On more robust estimation of skewness and kurtosis. Finance Res. Lett. 1(1), 56–73 (2004) Kirby, M.: Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns. Wiley, Hoboken (2001) Kraus, A., Litzenberger, R.H.: Skewness preference and the valuation of risk assets. J. Finance 31(4), 1085–1100 (1976) MacGillivray, H.L.: Skewness and asymmetry: measures of ordering. Ann. Stat. 14, 994–1011 (1986) Malkovich, J.F., Afifi, A.A.: On tests for multivariate normality. J. Am. Stat. Assoc. 68, 176–179 (1973) Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519–530 (1970) Mardia, K.V.: Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā Indian J. Stat. Ser. B 36(2), 115–128 (1974) Mardia, K.V., Foster, K.: Omnibus tests of multinormality based on skewness and kurtosis. Commun. Stat. Theory Methods 12(2), 207–221 (1983) Mardia, K.V., Zemroch, P.J.: Algorithm AS 84: measures of multivariate skewness and kurtosis. J. R. Stat. Soc. Ser. C (Appl. Stat.) 24(2), 262–265 (1975) Móri, T., Rohatgi, V.K., Székely, G.J.: On multivariate skewness and kurtosis. Theory Probab. Appl. 38(3), 547–551 (1994) Naik, D.N., Khattree, R.: Revisiting Olympic track records: some practical considerations in the principal component analysis. Am. Stat. 50, 140–144 (1996) Oja, H.: On location, scale, skewness and kurtosis of univariate distributions. Scand. J. Stat. 8(3), 154–168 (1981) Oja, H.: Descriptive statistics for multivariate distributions. Stat. Probab. Lett. 6, 327–332 (1983) Pearson, K.: Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. A 185, 71–110 (1894) Pearson, K.: Contributions to the mathematical theory of evolution II: skew variation in homogeneous material. Philos. Trans. R. Soc. Lond. A 86, 343–414 (1895) Serfling, R.J.: Multivariate Symmetry and Asymmetry Encyclopedia of Statistical Sciences. Wiley Online Library, Hoboken (2006) Siotani, M., Hayakawa, T., Fujikoshi, Y.: Modern Multivariate Statistical Analysis: A Graduate Course and Handbook. American Sciences Press, Columbus (1985) TC2000 Software-Version 7, Available at tc2000.com (2010) van Zwet, W.R.: Convex Transformations of Random Variables, Mathematical Centre Tract, vol. 7. Mathematisch Centrum, Amsterdam (1964) Von Hippel, P.: Skewness International Encyclopedia of Statistical Science. Springer, New York (2011) Yule, G.U.: An Introduction to the Theory of Statistics. C. Griffin Limited, London (1919)