An all‐atom structure‐based potential for proteins: Bridging minimal models with all‐atom empirical forcefields

Proteins: Structure, Function and Bioinformatics - Tập 75 Số 2 - Trang 430-441 - 2009
Paul C. Whitford1, Jeffrey K. Noel2, Shachi Gosavi2, Alexander Schug2, Karissa Y. Sanbonmatsu3, José N. Onuchic2
1Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, California 92093, USA.
2Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, California 92093
3Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, MS K710, Los Alamos, New Mexico 87545

Tóm tắt

AbstractProtein dynamics take place on many time and length scales. Coarse‐grained structure‐based$ {\bf (G{\overline o})} $models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All‐atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure‐based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all‐atom model. Results for the B domain of Protein A, the SH3 domain of C‐Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a Cαstructure‐based model and an all‐atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free‐energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a Cαmodel and the all‐atom model agree, although differences can be attributed to energetic heterogeneity in the all‐atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure‐based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function. Proteins 2009. © 2008 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.89.18.8721

10.1002/prot.340210302

10.1073/pnas.84.21.7524

10.1016/j.sbi.2004.01.009

Ueda Y, 1975, Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effects of specific amino acid sequence represented by specific inter‐unit interactions, Int J Pept Res, 7, 445, 10.1111/j.1399-3011.1975.tb02465.x

10.1073/pnas.94.3.777

10.1073/pnas.95.11.5921

10.1006/jmbi.2001.4871

10.1006/jmbi.2000.3693

10.1016/j.jmb.2005.11.074

10.1021/ar040204a

10.1073/pnas.0409572102

10.1016/j.jmb.2004.12.021

10.1073/pnas.0403724101

10.1016/j.jmb.2006.11.085

10.1074/jbc.M707632200

10.1073/pnas.0706077104

10.1073/pnas.0604375103

10.1016/j.str.2005.08.009

10.1021/jp0370730

10.1147/rd.453.0475

10.1016/S0076-6879(04)83004-0

10.1073/pnas.91.1.311

10.1016/0263-7855(96)00018-5

10.1021/cr040426m

10.1007/s008940100045

10.1016/S0065-3233(03)66002-X

10.1002/jcc.20289

10.1002/jcc.540040211

10.1038/319199a0

10.1073/pnas.2233312100

10.1016/j.jsb.2006.10.031

10.1126/science.282.5389.740

10.1073/pnas.2335541100

10.1103/PhysRevLett.91.158102

10.1002/cphc.200500213

10.1529/biophysj.105.070409

10.1063/1.2186317

10.1529/biophysj.108.131565

10.1016/S0022-2836(02)01379-7

10.1006/jmbi.2001.4586

10.1063/1.1514574

10.1021/ja029855x

10.1063/1.1874812

10.1021/bi00155a020

10.1038/385595a0

10.1073/pnas.0401396101

10.1021/bi00174a022

10.1021/bi00107a010

10.1073/pnas.242293099

10.1063/1.1314868

10.1073/pnas.96.22.12512

10.1006/jmbi.1998.1645

10.1063/1.2727465

10.1021/j100356a007

10.1016/S0031-8914(40)90098-2

10.1021/ja049510

10.1063/1.471317

10.1073/pnas.0606506104

10.1038/nature03991

10.1073/pnas.0801343105

10.1073/pnas.2135471100

10.1021/jp046736q

10.2976/1.2894846

10.1073/pnas.0610939104

10.1073/pnas.0708828104

10.1016/j.str.2007.11.008

10.1002/(SICI)1097-0134(199605)25:1<120::AID-PROT10>3.0.CO;2-M

10.1063/1.448118

10.1103/PhysRevLett.61.2635

10.1103/PhysRevLett.63.1195

10.1016/0010-4655(95)00042-E

10.1021/ja00214a001

10.1063/1.445869

10.1002/jcc.540130805

10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H