An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bai, G. & Shaner, G. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42, 135–161 (2004).
Zhang, J. B. et al. Natural occurrence of Fusarium head blight, mycotoxins and mycotoxin-producing isolates of Fusarium in commercial fields of wheat in Hubei. Plant Pathol. 62, 92–102 (2013).
Pestka, J. J. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 84, 663–679 (2010).
He, J. W., Zhou, T., Young, J. C., Boland, G. J. & Scott, P. M. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends Food Sci. Technol. 21, 67–76 (2010).
Karlovsky, P. Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl. Environ. Microbiol. 91, 491–504 (2011).
Fuchs, E., Binder, E. M., Heidler, D. & Krska, R. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit. Contam. 19, 379–386 (2002).
Islam, R., Zhou, T., Young, J. C., Goodwin, P. H. & Pauls, K. P. Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World J. Microbiol. Biotechnol. 28, 7–13 (2012).
Ito, M. et al. A novel actinomycete derived from wheat heads degrades deoxynivalenol in the grain of wheat and barley affected by Fusarium head blight. Appl. Microbiol. Biotechnol. 96, 1059–1070 (2012).
He, W. J. et al. Aerobic de-epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment. Toxins 8, 277, doi:10.3390/toxins8100277 (2016).
Sato, I. et al. Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera with distinct degradation mechanisms. FEMS Microbiol. Lett. 327, 110–117 (2012).
Shima, J. et al. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Appl. Environ. Microbiol. 63, 3825–3830 (1997).
He, J. W. et al. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol-transformation product by Devosia mutans 17-2-E-8. Food Chem. Toxicol. 84, 250–259 (2015).
Pierron, A. et al. Microbial biotransformation of DON: molecular basis for reduced toxicity. Sci. Rep. 6, 29105, doi:10.1038/srep29105 (2016).
Völkl, A., Vogler, B., Schollenberger, M. & Karlovsky, P. Microbial detoxification of mycotoxin deoxynivalenol. J. Basic Microbiol. 44, 147–156 (2004).
Ikunaga, Y. et al. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Appl. Microbiol. Biotechnol. 89, 419–427 (2011).
Xu, J. H. et al. Enzymatic characteristics of 3-Acetyl deoxynivalenol oxidase by Devosia sp. DDS-1. Sci. Agri. Sin. 46, 2240–2248 (2013).
Aylward, F. O. et al. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl. Environ. Microbiol. 79, 3724–3733 (2013).
Keum, Y. S., Lee, Y. J. & Kim, J. H. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1. J. Agric. Food Chem. 56, 9146–9151 (2008).
Manickam, N., Reddy, M. K., Saini, H. S. & Shanker, R. Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in gamma-HCH degradation. J. Appl. Microbiol. 104, 952–960 (2008).
Peng, R. H. et al. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32, 927–955 (2008).
Ito, M. et al. Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol. Appl. Environ. Microbiol. 79, 1619–1628 (2013).
Penning, T. M. The aldo-keto reductases (AKRs): Overview. Chem. Biol. Interact. 234, 236–246 (2015).
Knight, L. P., Primiano, T., Groopman, J. D., Kensler, T. W. & Sutter, T. R. cDNA cloning, expression and activity of a second human aflatoxin B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis 20, 1215–1223 (1999).
Gou, X. W., Fernando, W. G. D. & Seow-Brock, H. Y. Population structure, chemotype diversity, and potential chemotype shifting of Fusarium graminearum in wheat fields of Manitoba. Plant Dis. 92, 756–762 (2008).
Hassan, Y. I., Lepp, D., He, J. & Zhou, T. Draft genome sequences of Devosia sp. strain 17-2-E-8 and Devosia riboflavina strain IFO13584. Genome Announc. 2, doi:10.1128/genomeA.00994-14 (2014).
Jez, J. M., Flynn, T. G. & Penning, T. M. A new nomenclature for the aldo-keto reductase superfamily. Biochem. Pharmacol. 54, 639–647 (1997).
He, J. W. et al. Bacterial epimerization as a route for deoxynivalenol detoxification: the influence of growth and environmental conditions. Front. Microbiol 7, doi:10.3389/fmicb.2016.00572 (2016).
Poppenberger, B. et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 278, 47905–47914 (2003).
Li, X. et al. Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome p450 gene. Phytopathology 100, 183–191 (2010).
Zuo, D. Y. Cloning and functional characterization of genes induced by deoxynivalenol mycotoxin. Doctoral Dissertation, Huazhong Agricutural University, China, p.100 (2016).
Wang, X. et al. A BAC based physical map and genome survey of the rice false smut fungus Villosiclava virens. BMC genomics 14, 883, doi:10.1186/1471-2164-14-883 (2013).
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).
Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
Schmeisser, C. et al. Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl. Environ. Microbiol. 75, 4035–4045 (2009).
Xue, S. et al. Chicken single-chain antibody fused to alkaline phosphatase detects Aspergillus pathogens and their presence in natural samples by direct sandwich enzyme-linked immunosorbent assay. Anal. Chem. 85, 10992–10999 (2015).
Schäfer, A. et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73 (1994).
Kaczmarczyk, A., Vorholt, J. A. & Francez-Charlot, A. Markerless gene deletion system for sphingomonads. Appl. Environ. Microbiol. 78, 3774–3777 (2012).
Grant, A. W., Steel, G., Waugh, H. & Ellis, E. M. A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiol. Lett. 218, 93–99 (2003).