An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding Site

Springer Science and Business Media LLC - Tập 29 Số 11 - Trang 2943-2971 - 2012
Yan Lü1, Jianjun Chen2, Min Xiao2, Wěi Li2, Duane D. Miller2
1Department of Pharmaceutical Sciences, Health Science Center, University of Tennessee, 847 Monroe Ave, Memphis, TN 38163, USA.
2Department of Pharmaceutical Sciences, Health Science Center, University of Tennessee, Memphis, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pryor DE, O'Brate A, Bilcer G, Diaz JF, Wang Y, Kabaki M, et al. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry. 2002;41:9109–15.

Gigant B, Wang C, Ravelli RB, Roussi F, Steinmetz MO, Curmi PA, et al. Structural basis for the regulation of tubulin by vinblastine. Nature. 2005;435:519–22.

Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428:198–202.

Seveand P, Dumontet C. Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? The Lancet Oncology. 2008;9:168–75.

Stengel C, Newman SP, Leese MP, Potter BV, Reed MJ, Purohit A. Class III beta-tubulin expression and in vitro resistance to microtubule targeting agents. Br J Cancer. 2010;102:316–24.

Goto H, Yano S, Zhang H, Matsumori Y, Ogawa H, Blakey DC, et al. Activity of a new vascular targeting agent, ZD6126, in pulmonary metastases by human lung adenocarcinoma in nude mice. Cancer Res. 2002;62:3711–5.

Lippert 3rd JW. Vascular disrupting agents. Bioorg Med Chem. 2007;15:605–15.

Rustin GJ, Shreeves G, Nathan PD, Gaya A, Ganesan TS, Wang D, et al. A Phase Ib trial of CA4P (combretastatin A-4 phosphate), carboplatin, and paclitaxel in patients with advanced cancer. Br J Cancer. 2010;102:1355–60.

Kim TJ, Ravoori M, Landen CN, Kamat AA, Han LY, Lu C, et al. Antitumor and antivascular effects of AVE8062 in ovarian carcinoma. Cancer Res. 2007;67:9337–45.

http://clinicaltrials.gov/ct2/results?term=AVE8062 .

Pettit GR, Toki B, Herald DL, Verdier-Pinard P, Boyd MR, Hamel E, et al. Antineoplastic agents. 379. Synthesis of phenstatin phosphate. J Med Chem. 1998;41:1688–95.

Zhang LH, Wu L, Raymon HK, Chen RS, Corral L, Shirley MA, et al. The synthetic compound CC-5079 is a potent inhibitor of tubulin polymerization and tumor necrosis factor-alpha production with antitumor activity. Cancer Res. 2006;66:951–9.

Bohlinand L, Rosen B. Podophyllotoxin derivatives: drug discovery and development. Drug Discov Today. 1996;1:343–51.

Kupchan SM, Britton RW, Ziegler MF, Gilmore CJ, Restivo RJ, Bryan RF. Steganacin and steganangin, novel antileukemic lignan lactones from Steganotaenia araliacea. J Am Chem Soc. 1973;95:1335–6.

Attia SM. Molecular cytogenetic evaluation of the mechanism of genotoxic potential of amsacrine and nocodazole in mouse bone marrow cells. Journal of Applied Toxicology: JAT 2011. doi: 10.1002/jat.1753

Hamel E. Antimitotic natural products and their interactions with tubulin. Medicinal Research Reviews. 1996;16:207–31.

Matei D, Schilder J, Sutton G, Perkins S, Breen T, Quon C, et al. Activity of 2 methoxyestradiol (Panzem NCD) in advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Gynecol Oncol. 2009;115:90–6.

LaVallee TM, Burke PA, Swartz GM, Hamel E, Agoston GE, Shah J, et al. Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198. Mol Cancer Ther. 2008;7:1472–82.

Pasquier E, Sinnappan S, Munoz MA, Kavallaris M. ENMD-1198, a new analogue of 2-methoxyestradiol, displays both antiangiogenic and vascular-disrupting properties. Mol Cancer Ther. 2010;9:1408–18.

Hande KR, Hagey A, Berlin J, Cai Y, Meek K, Kobayashi H, et al. The pharmacokinetics and safety of ABT-751, a novel, orally bioavailable sulfonamide antimitotic agent: results of a phase 1 study. Clin Cancer Res. 2006;12:2834–40.

Shan B, Medina JC, Santha E, Frankmoelle WP, Chou TC, Learned RM, et al. Selective, covalent modification of beta-tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc Natl Acad Sci U S A. 1999;96:5686–91.

Patterson DM, Rustin GJS, Serradell N, Rosa E, Bolos J. Combretastatin A-4 phosphate. Drugs of the Future. 2007;32:1025–32.

Rischin D, Bibby DC, Chong G, Kremmidiotis G, Leske AF, Matthews CA, et al. Clinical, pharmacodynamic, and pharmacokinetic evaluation of BNC105P: a phase I trial of a novel vascular disrupting agent and inhibitor of cancer cell proliferation. Clin Cancer Res. 2011;17:5152–60.

Bacher G, Nickel B, Emig P, Vanhoefer U, Seeber S, Shandra A, et al. D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows efficacy toward multidrug-resistant tumor cells, and lacks neurotoxicity. Cancer Res. 2001;61:392–9.

Gourdeau H, Leblond L, Hamelin B, Desputeau C, Dong K, Kianicka I, et al. Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents. Mol Cancer Ther. 2004;3:1375–84.

Sirisoma N, Kasibhatla S, Pervin A, Zhang H, Jiang S, Willardsen JA, et al. Discovery of 2-chloro-N-(4-methoxyphenyl)-N-methylquinazolin-4-amine (EP128265, MPI-0441138) as a potent inducer of apoptosis with high in vivo activity. J Med Chem. 2008;51:4771–9.

Tsimberidou AM, Akerley W, Schabel MC, Hong DS, Uehara C, Chhabra A, et al. Phase I clinical trial of MPC-6827 (Azixa), a microtubule destabilizing agent, in patients with advanced cancer. Mol Cancer Ther. 2010;9:3410–9.

Burns CJ, Fantino E, Phillips ID, Su S, Harte MF, Bukczynska PE, et al. CYT997: a novel orally active tubulin polymerization inhibitor with potent cytotoxic and vascular disrupting activity in vitro and in vivo. Mol Cancer Ther. 2009;8:3036–45.

Shiand W, Siemann DW. Preclinical studies of the novel vascular disrupting agent MN-029. Anticancer Res. 2005;25:3899–904.

Ricart AD, Ashton EA, Cooney MM, Sarantopoulos J, Brell JM, Feldman MA, et al. A phase I study of MN-029 (denibulin), a novel vascular-disrupting agent, in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology. 2011;68:959–70.

de Ines C, Leynadier D, Barasoain I, Peyrot V, Garcia P, Briand C, et al. Inhibition of microtubules and cell cycle arrest by a new 1-deaza-7,8-dihydropteridine antitumor drug, CI 980, and by its chiral isomer, NSC 613863. Cancer Res. 1994;54:75–84.

Thomas JP, Moore T, Kraut EH, Balcerzak SP, Galloway S, Vandre DD. A phase II study of CI-980 in previously untreated extensive small cell lung cancer: an Ohio State University phase II research consortium study. Cancer Investigation. 2002;20:192–8.

Yoon JT, Palazzo AF, Xiao D, Delohery TM, Warburton PE, Bruce JN, et al. CP248, a derivative of exisulind, causes growth inhibition, mitotic arrest, and abnormalities in microtubule polymerization in glioma cells. Mol Cancer Ther. 2002;1:393–404.

Sun W, Stevenson JP, Gallo JM, Redlinger M, Haller D, Algazy K, et al. Phase I and pharmacokinetic trial of the proapoptotic sulindac analog CP-461 in patients with advanced cancer. Clin Cancer Res. 2002;8:3100–4.

Tripodi F, Pagliarin R, Fumagalli G, Bigi A, Fusi P, Orsini F, et al. Synthesis and biological evaluation of 1,4-Diaryl-2-azetidinones as specific anticancer agents: activation of adenosine monophosphate activated protein kinase and induction of apoptosis. J Med Chem. 2012;55:2112–24.

Bai R, Covell DG, Pei XF, Ewell JB, Nguyen NY, Brossi A, et al. Mapping the binding site of colchicinoids on beta -tubulin. 2-Chloroacetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondarily with cysteine 354. J Biol Chem. 2000;275:40443–52.

Dorleans A, Gigant B, Ravelli RB, Mailliet P, Mikol V, Knossow M. Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Proc Natl Acad Sci U S A. 2009;106:13775–9.

Barbier P, Dorleans A, Devred F, Sanz L, Allegro D, Alfonso C, et al. Stathmin and interfacial microtubule inhibitors recognize a naturally curved conformation of tubulin dimers. J Biol Chem. 2010;285:31672–81.

Nguyen TL, McGrath C, Hermone AR, Burnett JC, Zaharevitz DW, Day BW, et al. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J Med Chem. 2005;48:6107–16.

Dutcher SK. The tubulin fraternity: alpha to eta. Curr Opin Cell Biol. 2001;13:49–54.

Simoni D, Romagnoli R, Baruchello R, Rondanin R, Rizzi M, Pavani MG, et al. Novel combretastatin analogues endowed with antitumor activity. J Med Chem. 2006;49:3143–52.

Stevenson JP, Rosen M, Sun W, Gallagher M, Haller DG, Vaughn D, et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21:4428–38.

Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA. Medicinal chemistry of combretastatin A4: present and future directions. J Med Chem. 2006;49:3033–44.

Aprile S, Del Grosso E, Tron GC, Grosa G. In vitro metabolism study of combretastatin A-4 in rat and human liver microsomes. Drug Metabolism and Disposition: the Biological Fate of Chemicals. 2007;35:2252–61.

Gwaltney 2nd SL, Imade HM, Barr KJ, Li Q, Gehrke L, Credo RB, et al. Novel sulfonate analogues of combretastatin A-4: potent antimitotic agents. Bioorganic & Medicinal Chemistry Letters. 2001;11:871–4.

Fortin S, Wei L, Moreau E, Lacroix J, Cote MF, Petitclerc E, et al. synthesis, biological evaluation, and structure-activity relationships of substituted phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates as new tubulin inhibitors mimicking combretastatin A-4. J Med Chem. 2011;54:4559–80.

Fortin S, Wei L, Moreau E, Lacroix J, Cote MF, Petitclerc E, et al. Substituted phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonamides as antimitotics. Antiproliferative, antiangiogenic and antitumoral activity, and quantitative structure-activity relationships. European Journal of Medicinal Chemistry. 2011;46:5327–42.

Simoni D, Romagnoli R, Baruchello R, Rondanin R, Grisolia G, Eleopra M, et al. Novel A-ring and B-ring modified combretastatin A-4 (CA-4) analogues endowed with interesting cytotoxic activity. J Med Chem. 2008;51:6211–5.

Ohsumi K, Hatanaka T, Fujita K, Nakagawa R, Fukuda Y, Nihei Y, et al. Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. Bioorganic & Medicinal Chemistry Letters. 1998;8:3153–8.

Wang L, Woods KW, Li Q, Barr KJ, McCroskey RW, Hannick SM, et al. Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J Med Chem. 2002;45:1697–711.

Kim Y, Nam NH, You YJ, Ahn BZ. Synthesis and cytotoxicity of 3,4-diaryl-2(5H)-furanones. Bioorganic & Medicinal Chemistry Letters. 2002;12:719–22.

Nam NH, Kim Y, You YJ, Hong DH, Kim HM, Ahn BZ. Synthesis and anti-tumor activity of novel combretastatins: combretocyclopentenones and related analogues. Bioorganic & Medicinal Chemistry Letters. 2002;12:1955–8.

Nam NH, Kim Y, You YJ, Hong DH, Kim HM, Ahn BZ. Combretoxazolones: synthesis, cytotoxicity and antitumor activity. Bioorganic & Medicinal Chemistry Letters. 2001;11:3073–6.

Bailly C, Bal C, Barbier P, Combes S, Finet JP, Hildebrand MP, et al. Synthesis and biological evaluation of 4-arylcoumarin analogues of combretastatins. J Med Chem. 2003;46:5437–44.

Combes S, Barbier P, Douillard S, McLeer-Florin A, Bourgarel-Rey V, Pierson JT, et al. Synthesis and biological evaluation of 4-arylcoumarin analogues of combretastatins. Part 2. J Med Chem. 2011;54:3153–62.

Tron GC, Pagliai F, Del Grosso E, Genazzani AA, Sorba G. Synthesis and cytotoxic evaluation of combretafurazans. J Med Chem. 2005;48:3260–8.

Pati HN, Wicks M, Holt HL, Leblanc R, Weisbruch P, Forrest L, et al. Synthesis and biological evaluation of cis-combretastatin analogs and their novel 1,2,3-triazole derivatives. Heterocyclic Commun. 2005;11:117–20.

Simoni D, Grisolia G, Giannini G, Roberti M, Rondanin R, Piccagli L, et al. Heterocyclic and phenyl double-bond-locked combretastatin analogues possessing potent apoptosis-inducing activity in HL60 and in MDR cell lines. J Med Chem. 2005;48:723–36.

Flynn BL, Flynn GP, Hamel E, Jung MK. The synthesis and tubulin binding activity of thiophene-based analogues of combretastatin A-4. Bioorganic & Medicinal Chemistry Letters. 2001;11:2341–3.

O'Boyle NM, Carr M, Greene LM, Bergin O, Nathwani SM, McCabe T, et al. Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents. J Med Chem. 2010;53:8569–84.

Romagnoli R, Baraldi PG, Brancale A, Ricci A, Hamel E, Bortolozzi R, et al. Convergent synthesis and biological evaluation of 2-amino-4-(3',4',5'-trimethoxyphenyl)-5-aryl thiazoles as microtubule targeting agents. J Med Chem. 2011;54:5144–53.

Beale TM, Allwood DM, Bender A, Bond PJ, Brenton JD, Charnock-Jones DS, et al. Xian A-ring dihalogenation increases the cellular activity of combretastatin-templated tetrazoles. ACS Medicinal Chemistry Letters: Ahead of Print, 2012.

Schobert R, Biersack B, Dietrich A, Effenberger K, Knauer S, Mueller T. 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and -N-methylimidazoles that are cytotoxic against combretastatin A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. J Med Chem. 2010;53:6595–602.

Theeramunkong S, Caldarelli A, Massarotti A, Aprile S, Caprioglio D, Zaninetti R, et al. Regioselective Suzuki coupling of dihaloheteroaromatic compounds as a rapid strategy to synthesize potent rigid combretastatin analogues. J Med Chem. 2011;54:4977–86.

Furst R, Zupko I, Berenyi A, Ecker GF, Rinner U. Synthesis and antitumor-evaluation of cyclopropyl-containing combretastatin analogs. Bioorganic & Medicinal Chemistry Letters. 2009;19:6948–51.

Hadfield JA, Gaukroger K, Hirst N, Weston AP, Lawrence NJ, McGown AT. Synthesis and evaluation of double bond substituted combretastatins. European Journal of Medicinal Chemistry. 2005;40:529–41.

Liu T, Cui R, Chen J, Zhang J, He Q, Yang B, et al. 4,5-Diaryl-3-aminopyrazole derivatives as analogs of Combretastatin A-4: synthesis and biological evaluation. Arch Pharm. 2011;344:279–86.

Akselsen OW, Odlo K, Cheng JJ, Maccari G, Botta M, Hansen TV. Synthesis, biological evaluation and molecular modeling of 1,2,3-triazole analogs of combretastatin A-1. Bioorg Med Chem. 2012;20:234–42.

Xue N, Yang X, Wu R, Chen J, He Q, Yang B, et al. Synthesis and biological evaluation of imidazol-2-one derivatives as potential antitumor agents. Bioorg Med Chem. 2008;16:2550–7.

Ruprich J, Prout A, Dickson J, Younglove B, Nolan L, Baxi K, et al. Design, synthesis and biological testing of cyclohexenone derivatives of combretastatin-A4. Letters in Drug Design & Discovery. 2007;4:144–8.

Lee L, Davis R, Vanderham J, Hills P, Mackay H, Brown T, et al. 1,2,3,4-tetrahydro-2-thioxopyrimidine analogs of combretastatin-A4. European Journal of Medicinal Chemistry. 2008;43:2011–5.

Johnson M, Younglove B, Lee L, LeBlanc R, Holt Jr H, Hills P, et al. Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4. Bioorganic & Medicinal Chemistry Letters. 2007;17:5897–901.

Mateo C, Perez-Melero C, Pelaez R, Medarde M. Stilbenophane analogues of deoxycombretastatin A-4. J Org Chem. 2005;70:6544–7.

De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, et al. New arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies. J Med Chem. 2006;49:947–54.

De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, et al. Arylthioindoles, potent inhibitors of tubulin polymerization. J Med Chem. 2004;47:6120–3.

La Regina G, Sarkar T, Bai R, Edler MC, Saletti R, Coluccia A, et al. New arylthioindoles and related bioisosteres at the sulfur bridging group. 4. Synthesis, tubulin polymerization, cell growth inhibition, and molecular modeling studies. J Med Chem. 2009;52:7512–27.

La Regina G, Bai R, Rensen W, Coluccia A, Piscitelli F, Gatti V, et al. Design and synthesis of 2-Heterocyclyl-3-arylthio-1H-indoles as potent tubulin polymerization and cell growth inhibitors with improved metabolic stability. J Med Chem. 2011;54:8394–406.

Mahboobi S, Pongratz H, Hufsky H, Hockemeyer J, Frieser M, Lyssenko A, et al. Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents. J Med Chem. 2001;44:4535–53.

Kuo CC, Hsieh HP, Pan WY, Chen CP, Liou JP, Lee SJ, et al. BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 2004;64:4621–8.

Hu CB, Chen CP, Yeh TK, Song JS, Chang CY, Chuu JJ, et al. BPR0C261 is a novel orally active antitumor agent with antimitotic and anti-angiogenic activities. Cancer Science. 2011;102:182–91.

Li WT, Hwang DR, Chen CP, Shen CW, Huang CL, Chen TW, et al. Synthesis and biological evaluation of N-heterocyclic indolyl glyoxylamides as orally active anticancer agents. J Med Chem. 2003;46:1706–15.

Nien CY, Chen YC, Kuo CC, Hsieh HP, Chang CY, Wu JS, et al. 5-Amino-2-aroylquinolines as highly potent tubulin polymerization inhibitors. J Med Chem. 2010;53:2309–13.

Liou JP, Wu ZY, Kuo CC, Chang CY, Lu PY, Chen CM, et al. Discovery of 4-amino and 4-hydroxy-1-aroylindoles as potent tubulin polymerization inhibitors. J Med Chem. 2008;51:4351–5.

Lee HY, Chang JY, Nien CY, Kuo CC, Shih KH, Wu CH, et al. 5-Amino-2-aroylquinolines as highly potent tubulin polymerization inhibitors. Part 2. The impact of bridging groups at position C-2. J Med Chem. 2011;54:8517–25.

Arthuis M, Pontikis R, Chabot GG, Quentin L, Scherman D, Florent JC. Domino approach to 2-aroyltrimethoxyindoles as novel heterocyclic combretastatin A4 analogues. European Journal of Medicinal Chemistry. 2011;46:95–100.

Lai MJ, Chang JY, Lee HY, Kuo CC, Lin MH, Hsieh HP, et al. Synthesis and biological evaluation of 1-(4'-Indolyl and 6'-Quinolinyl) indoles as a new class of potent anticancer agents. European Journal of Medicinal Chemistry. 2011;46:3623–9.

Lai MJ, Kuo CC, Yeh TK, Hsieh HP, Chen LT, Pan WY, et al. Synthesis and structure-activity relationships of 1-benzyl-4,5,6-trimethoxyindoles as a novel class of potent antimitotic agents. ChemMedChem. 2009;4:588–93.

Xie F, Zhao H, Li D, Chen H, Quan H, Shi X, et al. Synthesis and biological evaluation of 2,4,5-substituted pyrimidines as a new class of tubulin polymerization inhibitors. J Med Chem. 2011;54:3200–5.

El-Nakkady SS, Hanna MM, Roaiah HM, Ghannam IA. Synthesis, molecular docking study and antitumor activity of novel 2-phenylindole derivatives. European Journal of Medicinal Chemistry. 2012;47:387–98.

Arora S, Wang XI, Keenan SM, Andaya C, Zhang Q, Peng Y, et al. Novel microtubule polymerization inhibitor with potent antiproliferative and antitumor activity. Cancer Res. 2009;69:1910–5.

Shetty RS, Lee Y, Liu B, Husain A, Joseph RW, Lu Y, et al. Synthesis and pharmacological evaluation of N-(3-(1H-indol-4-yl)-5-(2-methoxyisonicotinoyl)phenyl)methanesulfonamide (LP-261), a potent antimitotic agent. J Med Chem. 2011;54:179–200.

Li L, Wang HK, Kuo SC, Wu TS, Mauger A, Lin CM, et al. Antitumor agents. 155. Synthesis and biological evaluation of 3',6,7-substituted 2-phenyl-4-quinolones as antimicrotubule agents. J Med Chem. 1994;37:3400–7.

Li L, Wang HK, Kuo SC, Wu TS, Lednicer D, Lin CM, et al. Antitumor agents. 150. 2',3',4',5',5,6,7-substituted 2-phenyl-4-quinolones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem. 1994;37:1126–35.

Zhang C, Yang N, Yang CH, Ding HS, Luo C, Zhang Y, et al. S9, a novel anticancer agent, exerts its anti-proliferative activity by interfering with both PI3K-Akt-mTOR signaling and microtubule cytoskeleton. PLoS One. 2009;4:e4881.

Romagnoli R, Baraldi PG, Carrion MD, Lopez Cara C, Preti D, Fruttarolo F, et al. Synthesis and biological evaluation of 2- and 3-aminobenzo[b]thiophene derivatives as antimitotic agents and inhibitors of tubulin polymerization. J Med Chem. 2007;50:2273–7.

Keller L, Beaumont S, Liu JM, Thoret S, Bignon JS, Wdzieczak-Bakala J, et al. New C5-alkylated indolobenzazepinones acting as inhibitors of tubulin polymerization: cytotoxic and antitumor activities. J Med Chem. 2008;51:3414–21.

Pons V, Beaumont S, Dau METH, Iorga BI, Dodd RH. Rigid analogues of antimitotic indolobenzazepinones: new insights into tubulin binding via molecular modeling. ACS Medicinal Chemistry Letters. 2011;2:565–570.

Boumendjel A, McLeer-Florin A, Champelovier P, Allegro D, Muhammad D, Souard F, et al. A novel chalcone derivative which acts as a microtubule depolymerising agent and an inhibitor of P-gp and BCRP in in-vitro and in-vivo glioblastoma models. BMC Cancer. 2009;9:242.

Kerr DJ, Hamel E, Jung MK, Flynn BL. The concise synthesis of chalcone, indanone and indenone analogues of combretastatin A4. Bioorg Med Chem. 2007;15:3290–8.

Luo Y, Qiu KM, Lu X, Liu K, Fu J, Zhu HL. Synthesis, biological evaluation, and molecular modeling of cinnamic acyl sulfonamide derivatives as novel antitubulin agents. Bioorg Med Chem. 2011;19:4730–8.

Ruan BF, Lu X, Tang JF, Wei Y, Wang XL, Zhang YB, et al. Synthesis, biological evaluation, and molecular docking studies of resveratrol derivatives possessing chalcone moiety as potential antitubulin agents. Bioorg Med Chem. 2011;19:2688–95.

Risinger AL, Westbrook CD, Encinas A, Mulbaier M, Schultes CM, Wawro S, et al. ELR510444, a novel microtubule disruptor with multiple mechanisms of action. J Pharmacol Exp Ther. 2011;336:652–60.

Chang JY, Hsieh HP, Chang CY, Hsu KS, Chiang YF, Chen CM, et al. 7-Aroyl-aminoindoline-1-sulfonamides as a novel class of potent antitubulin agents. J Med Chem. 2006;49:6656–9.

Liou JP, Hsu KS, Kuo CC, Chang CY, Chang JY. A novel oral indoline-sulfonamide agent, N-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-isonicotinamide (J30), exhibits potent activity against human cancer cells in vitro and in vivo through the disruption of microtubule. J Pharmacol Exp Ther. 2007;323:398–405.

Cushman M, He HM, Katzenellenbogen JA, Varma RK, Hamel E, Lin CM, et al. Synthesis of analogs of 2-methoxyestradiol with enhanced inhibitory effects on tubulin polymerization and cancer cell growth. J Med Chem. 1997;40:2323–34.

Cushman M, Mohanakrishnan AK, Hollingshead M, Hamel E. The effect of exchanging various substituents at the 2-position of 2-methoxyestradiol on cytotoxicity in human cancer cell cultures and inhibition of tubulin polymerization. J Med Chem. 2002;45:4748–54.

Edsall AB, Mohanakrishnan AK, Yang D, Fanwick PE, Hamel E, Hanson AD, et al. Effects of altering the electronics of 2-methoxyestradiol on cell proliferation, on cytotoxicity in human cancer cell cultures, and on tubulin polymerization. J Med Chem. 2004;47:5126–39.

Agoston GE, Shah JH, Lavallee TM, Zhan X, Pribluda VS, Treston AM. Synthesis and structure-activity relationships of 16-modified analogs of 2-methoxyestradiol. Bioorg Med Chem. 2007;15:7524–37.

Chander SK, Foster PA, Leese MP, Newman SP, Potter BV, Purohit A, et al. In vivo inhibition of angiogenesis by sulphamoylated derivatives of 2-methoxyoestradiol. Br J Cancer. 2007;96:1368–76.

Ireson CR, Chander SK, Purohit A, Perera S, Newman SP, Parish D, et al. Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents. Br J Cancer. 2004;90:932–7.

Jourdan F, Leese MP, Dohle W, Hamel E, Ferrandis E, Newman SP, et al. Synthesis, antitubulin, and antiproliferative SAR of analogues of 2-methoxyestradiol-3,17-O,O-bis-sulfamate. J Med Chem. 2010;53:2942–51.

Nakagawa-Goto K, Chen TH, Peng CY, Bastow KF, Wu JH, Lee KH. Antitumor agents 259. Design, syntheses, and structure-activity relationship study of desmosdumotin C analogs. J Med Chem. 2007;50:3354–8.

Nakagawa-Goto K, Bastow KF, Chen TH, Morris-Natschke SL, Lee KH. Antitumor agents 260. New desmosdumotin B analogues with improved in vitro anticancer activity. J Med Chem. 2008;51:3297–303.

Nakagawa-Goto K, Wu PC, Lai CY, Hamel E, Zhu H, Zhang L, et al. Antitumor agents. 284. New desmosdumotin B analogues with bicyclic B-ring as cytotoxic and antitubulin agents. J Med Chem. 2011;54:1244–55.

Nakagawa-Goto K, Wu PC, Bastow KF, Yang SC, Yu SL, Chen HY, et al. Antitumor agents 283. Further elaboration of desmosdumotin C analogs as potent antitumor agents: activation of spindle assembly checkpoint as possible mode of action. Bioorg Med Chem. 2011;19:1816–22.

Beutler JA, Cardellina JH II, Lin CM, Hamel E, Cragg GM, Boyd MR. Centaureidin, a cytotoxic flavone from Polymnia fruticosa, inhibits tubulin polymerization. Bioorganic & Medicinal Chemistry Letters. 1993;3:581–4.

Naik PK, Chatterji BP, Vangapandu SN, Aneja R, Chandra R, Kanteveri S, et al. Rational design, synthesis and biological evaluations of amino-noscapine: a high affinity tubulin-binding noscapinoid. J Comput Aided Mol Des. 2011;25:443–54.

Hartley RM, Peng J, Fest GA, Dakshanamurthy S, Frantz DE, Brown ML, et al. Polygamain, a new microtubule depolymerizing agent that occupies a unique pharmacophore in the colchicine site. Molecular Pharmacology. 2011.

Cui CB, Kakeya H, Okada G, Onose R, Ubukata M, Takahashi I, et al. Tryprostatins A and B, novel mammalian cell cycle inhibitors produced by Aspergillus fumigatus. J Antibiot. 1995;48:1382–4.

Woehlecke H, Osada H, Herrmann A, Lage H. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. International Journal of Cancer Journal International Du Cancer. 2003;107:721–8.

Kanoh K, Kohno S, Katada J, Takahashi J, Uno I. (-)-Phenylahistin arrests cells in mitosis by inhibiting tubulin polymerization. J Antibiot. 1999;52:134–41.

Kanzaki H, Yanagisawa S, Kanoh K, Nitoda T. A novel potent cell cycle inhibitor dehydrophenylahistin–enzymatic synthesis and inhibitory activity toward sea urchin embryo. J Antibiot. 2002;55:1042–7.

Yamazaki Y, Tanaka K, Nicholson B, Deyanat-Yazdi G, Potts B, Yoshida T, et al. Synthesis and Structure-Activity Relationship Study of Antimicrotubule Agents Phenylahistin Derivatives with a Didehydropiperazine-2,5-dione Structure. J Med Chem. 2012;55:1056–71.

Wipf P, Reeves JT, Balachandran R, Day BW. Synthesis and biological evaluation of structurally highly modified analogues of the antimitotic natural product curacin A. J Med Chem. 2002;45:1901–17.

Wipf P, Reeves JT, Balachandran R, Giuliano KA, Hamel E, Day BW. Synthesis and Biological Evaluation of a Focused Mixture Library of Analogues of the Antimitotic Marine Natural Product Curacin A. J Am Chem Soc. 2000;122:9391–5.

Ziegelbauer J, Shan B, Yager D, Larabell C, Hoffmann B, Tjian R. Transcription factor MIZ-1 is regulated via microtubule association. Molecular Cell. 2001;8:339–49.

Bai R, Pei XF, Boye O, Getahun Z, Grover S, Bekisz J, et al. Identification of cysteine 354 of beta-tubulin as part of the binding site for the A ring of colchicine. J Biol Chem. 1996;271:12639–45.

Combeau C, Provost J, Lancelin F, Tournoux Y, Prod'homme F, Herman F, et al. RPR112378 and RPR115781: two representatives of a new family of microtubule assembly inhibitors. Mol Pharmacol. 2000;57:553–63.

Bouchon B, Chambon C, Mounetou E, Papon J, Miot-Noirault E, Gaudreault RC, et al. Alkylation of beta-tubulin on Glu 198 by a microtubule disrupter. Mol Pharmacol. 2005;68:1415–22.

Fortin S, Bouchon B, Chambon C, Lacroix J, Moreau E, Chezal JM, et al. Characterization of the covalent binding of N-phenyl-N'-(2-chloroethyl)ureas to {beta}-tubulin: importance of Glu198 in microtubule stability. J Pharmacol Exp Ther. 2011;336:460–7.

Prinz H, Schmidt P, Bohm KJ, Baasner S, Muller K, Gerlach M, et al. Phenylimino-10H-anthracen-9-ones as novel antimicrotubule agents-synthesis, antiproliferative activity and inhibition of tubulin polymerization. Bioorg Med Chem. 2011;19:4183–91.

Kasibhatla S, Gourdeau H, Meerovitch K, Drewe J, Reddy S, Qiu L, et al. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol Cancer Ther. 2004;3:1365–74.

Kemnitzer W, Drewe J, Jiang S, Zhang H, Crogan-Grundy C, Labreque D, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 4. Structure-activity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions. J Med Chem. 2008;51:417–23.

Henderson MC, Shaw YJ, Wang H, Han H, Hurley LH, Flynn G, et al. UA62784, a novel inhibitor of centromere protein E kinesin-like protein. Mol Cancer Ther. 2009;8:36–44.

Tcherniuk S, Deshayes S, Sarli V, Divita G, Abrieu A. UA62784 Is a cytotoxic inhibitor of microtubules, not CENP-E. Chem Biol. 2011;18:631–41.

Dalyot-Herman N, Delgado-Lopez F, Gewirtz DA, Gupton JT, Schwartz EL. Interference with endothelial cell function by JG-03-14, an agent that binds to the colchicine site on microtubules. Biochem Pharmacol. 2009;78:1167–77.

Mooberry SL, Weiderhold KN, Dakshanamurthy S, Hamel E, Banner EJ, Kharlamova A, et al. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol. 2007;72:132–40.

Zhang Z, Meng T, Yang N, Wang W, Xiong B, Chen Y, et al. MT119, a new planar-structured compound, targets the colchicine site of tubulin arresting mitosis and inhibiting tumor cell proliferation. International Journal of Cancer Journal International Du Cancer. 2011;129:214–24.

Lisowski V, Leonce S, Kraus-Berthier L, Sopkova-de Oliveira Santos J, Pierre A, Atassi G, et al. Design, synthesis, and evaluation of novel thienopyrrolizinones as antitubulin agents. J Med Chem. 2004;47:1448–64.

Leoni LM, Hamel E, Genini D, Shih H, Carrera CJ, Cottam HB, et al. Indanocine, a microtubule-binding indanone and a selective inducer of apoptosis in multidrug-resistant cancer cells. J Natl Cancer Inst. 2000;92:217–24.

Liberatore AM, Coulomb H, Pons D, Dutruel O, Kasprzyk PG, Carlson M, et al. IRC-083927 is a new tubulin binder that inhibits growth of human tumor cells resistant to standard tubulin-binding agents. Mol Cancer Ther. 2008;7:2426–34.

Wasylyk C, Zheng H, Castell C, Debussche L, Multon MC, Wasylyk B. Inhibition of the Ras-Net (Elk-3) pathway by a novel pyrazole that affects microtubules. Cancer Res. 2008;68:1275–83.

Shin KD, Yoon YJ, Kang YR, Son KH, Kim HM, Kwon BM, et al. KRIBB3, a novel microtubule inhibitor, induces mitotic arrest and apoptosis in human cancer cells. Biochem Pharmacol. 2008;75:383–94.

Szczepankiewicz BG, Liu G, Jae HS, Tasker AS, Gunawardana IW, von Geldern TW, et al. New antimitotic agents with activity in multi-drug-resistant cell lines and in vivo efficacy in murine tumor models. J Med Chem. 2001;44:4416–30.

Tahir SK, Han EK, Credo B, Jae HS, Pietenpol JA, Scatena CD, et al. A-204197, a new tubulin-binding agent with antimitotic activity in tumor cell lines resistant to known microtubule inhibitors. Cancer Res. 2001;61:5480–5.

Li Q, Woods KW, Claiborne A, Gwaltney 2nd SL, Barr KJ, Liu G, et al. Synthesis and biological evaluation of 2-indolyloxazolines as a new class of tubulin polymerization inhibitors. Discovery of A-289099 as an orally active antitumor agent. Bioorganic & Medicinal Chemistry Letters. 2002;12:465–9.

Tahir SK, Nukkala MA, Zielinski Mozny NA, Credo RB, Warner RB, Li Q, et al. Biological activity of A-289099: an orally active tubulin-binding indolyloxazoline derivative. Mol Cancer Ther. 2003;2:227–33.

Andreani A, Burnelli S, Granaiola M, Leoni A, Locatelli A, Morigi R, et al. Antitumor activity of new substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinones and 3-(5-imidazo[2,1-b]thiadiazolylmethylene)-2-indolinones: selectivity against colon tumor cells and effect on cell cycle-related events. J Med Chem. 2008;51:7508–13.

Andreani A, Granaiola M, Locatelli A, Morigi R, Rambaldi M, Varoli L, et al. Substituted 3-(5-Imidazo[2,1-b]thiazolylmethylene)-2-indolinones and analogues: synthesis, cytotoxic activity, and study of the mechanism of action (1). J Med Chem. 2012.

Edsall AB, Agoston GE, Treston AM, Plum SM, McClanahan RH, Lu TS, et al. Synthesis and in vivo antitumor evaluation of 2-methoxyestradiol 3-phosphate, 17-phosphate, and 3,17-diphosphate. J Med Chem. 2007;50:6700–5.

Rubenstein SM, Baichwal V, Beckmann H, Clark DL, Frankmoelle W, Roche D, et al. Hydrophilic, pro-drug analogues of T138067 are efficacious in controlling tumor growth in vivo and show a decreased ability to cross the blood brain barrier. J Med Chem. 2001;44:3599–605.

Crielaard BJ, van der Wal S, Lammers T, Le HT, Hennink WE, Schiffelers RM, et al. A polymeric colchicinoid prodrug with reduced toxicity and improved efficacy for vascular disruption in cancer therapy. International Journal of Nanomedicine. 2011;6:2697–703.

Crielaard BJ, van der Wal S, Le HT, Bode AT, Lammers T, Hennink WE, et al. Liposomes as carriers for colchicine-derived prodrugs: Vascular disrupting nanomedicines with tailorable drug release kinetics. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences. 2012;45:429–35.

Lu Y, Li CM, Wang Z, Ross 2nd CR, Chen J, Dalton JT, et al. Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: synthesis, biological evaluation, and structure-activity relationships. J Med Chem. 2009;52:1701–11.

Li CM, Wang Z, Lu Y, Ahn S, Narayanan R, Kearbey JD, et al. Biological activity of 4-substituted methoxybenzoyl-aryl-thiazole: an active microtubule inhibitor. Cancer Res. 2011;71:216–24.

Li F, Lu Y, Li W, Miller DD, Mahato RI. Synthesis, formulation and in vitro evaluation of a novel microtubule destabilizer, SMART-100. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2010;143:151–8.

Chen J, Wang Z, Li CM, Lu Y, Vaddady PK, Meibohm B, et al. Discovery of novel 2-aryl-4-benzoyl-imidazoles targeting the colchicines binding site in tubulin as potential anticancer agents. J Med Chem. 2010;53:7414–27.

Babu B, Lee M, Lee L, Strobel R, Brockway O, Nickols A, et al. Acetyl analogs of combretastatin A-4: synthesis and biological studies. Bioorg Med Chem. 2011;19:2359–67.

Lee M, Brockway O, Dandavati A, Tzou S, Sjoholm R, Satam V, et al. A novel class of trans-methylpyrazoline analogs of combretastatins: synthesis and in-vitro biological testing. European Journal of Medicinal Chemistry. 2011;46:3099–104.

Gangjee A, Zhao Y, Hamel E, Westbrook C, Mooberry SL. Synthesis and biological activities of (R)- and (S)-N-(4-Methoxyphenyl)-N,2,6-trimethyl-6,7-dihydro-5H-cyclopenta[d]pyrimi din-4-aminium chloride as potent cytotoxic antitubulin agents. J Med Chem. 2011;54:6151–5.