An Optimized Protocol for Packaging Pseudotyped Integrase Defective Lentivirus
Tóm tắt
A number of integrase defective lentiviral (IDLV) packaging systems have been developed to produce integration deficient lentiviruses for gene delivery and epichromosomal expression. However, despite their growing demand, a comparative study to systemically evaluate the performance efficiency of different mutants on virus packaging and gene expression has not been done. Site-directed mutagenesis was used to generate five integrasedeficient mutants for non-integrative lentiviral packaging (NILVP). The five mutants were then individually incorporated to make different integrase defective lentivirus plasmid packaging mix, keeping other packaging factors constant. CD511B-1, a lentivectorexpressing GFP from an EF1 promoter, was packaged with each of the five different lentivirus packaging mix to make pseudotypedviral particles. The performance and packaging efficiency of each of the integrase deficient mutants was evaluated based on GFP expression in HT1080 cells, while the wild type lentivirus packaging mix was used as a control. Of the five integrase mutant candidates, one with the highestGFP transgene expression level was chosen for further characterization. The non-integrative nature of this candidate was confirmed by quantitative polymerase chain reaction and characterized using both dividing and non-dividing cells. Finally, a detailed standard protocol for NILVP using this integrase defective mutant was developed. An efficient lentiviral packaging system for producing on-integrative lentivirus was established. This system is compatible with most existing lentivectors and can be used to transduce both dividing and non-dividing cells.
Tài liệu tham khảo
Matrai J, Chuah MK, et al. Recent advances in lentiviral vector development and applications. MolTher. 2010;18(3):477–90.
Collins M, Thrasher A. Gene therapy: progress and predictions. Proc Biol Sci. 2015;282:1821.
Sarkis C, Philippe S, et al. Non-integrating lentiviral vectors. Curr Gene Ther. 2008;8(6):430–7.
Yang X, Boehm JS, et al. A public genome-scale lentiviral expression library of human ORFs. Nat Methods. 2011;8(8):659–61.
Stegmeier F, Hu G, et al. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl AcadSci U S. 2005;A102(37):13212–7.
Scherr M, Venturini L, et al. Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Res. 2007;35(22):e149.
Maus MV, Grupp SA, et al. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014;123(17):2625–35.
Lipowska-Bhalla G, Gilham DE, et al. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer ImmunolImmunother. 2012;61(7):953–62.
Montini E, Cesana D, et al. Nat Biotechnol. 2006;24(6):687–96.
Kulkosky J, Jones KS, et al. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol. 1992;12(5):2331–8.
Saenz DT, Loewen N, et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol. 2004;78(6):2906–20.
Philippe S, Sarkis C, et al. Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl AcadSci U S. 2006;A103(47):17684–9.
Mendenhall A, Lesnik J, Mukherjee C, Antes T, Sengupta R. Packaging HIV- or FIV-based Lentivector Expression Constructs & Transduction of VSV-G Pseudotyped Viral Particles. J Vis Exp. 2012;62:e3171.
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.
Uhde-Stone C, Huang J, et al. A robust dual reporter system to visualize and quantify gene expression mediated by transcription activator-like effectors. Biol Proced Online. 2012;14(1):8.
Uhde-Stone C, Sarkar N, et al. A TALEN-based strategy for efficient bi-allelic miRNA ablation in human cells. RNA. 2014;20(6):948–55.
Holkers M, Maggio I, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41(5):e63.