An MT-InSAR Data Partition Strategy for Sentinel-1A/B TOPS Data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ng, 2011, Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry, J. Geod., 86, 375, 10.1007/s00190-011-0525-4
Wang, 2012, InSAR reveals coastal subsidence in the Pearl River Delta, China, Geophys. J. Int., 191, 1119
Feng, 2015, Source parameters of the 2014 Mw 6.1 South Napa earthquake estimated from the Sentinel 1A, COSMO-SkyMed and GPS data, Tectonophysics, 655, 139, 10.1016/j.tecto.2015.05.018
Chaussard, 2016, Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: Application to the southern San Andreas Fault system, Geochem. Geophys. Geosystems, 17, 1214, 10.1002/2015GC006246
Dong, 2018, Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China, Remote Sens. Environ., 205, 180, 10.1016/j.rse.2017.11.022
Xiong, 2020, Pre- and post-failure spatial-temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images, Eng. Geol., 279, 105580, 10.1016/j.enggeo.2020.105880
Novellino, 2021, Slow-moving landslide risk assessment combining Machine Learning and InSAR techniques, CATENA, 203, 105317, 10.1016/j.catena.2021.105317
Meng, Q., Confuorto, P., Peng, Y., Raspini, F., Bianchini, S., Han, S., Liu, H., and Casagli, N. (2020). Regional Recognition and Classification of Active Loess Landslides Using Two-Dimensional Deformation Derived from Sentinel-1 Interferometric Radar Data. Remote Sens., 12.
Miele, 2022, SAR data and field surveys combination to update rainfall-induced shallow landslide inventory, Remote Sens. Appl. Soc. Environ., 26, 100755
Yang, 2018, High-Resolution Three-Dimensional Displacement Retrieval of Mining Areas From a Single SAR Amplitude Pair Using the SPIKE Algorithm, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 3782, 10.1109/JSTARS.2018.2861828
Ghasemloo, 2022, Estimating the Agricultural Farm Soil Moisture Using Spectral Indices of Landsat 8, and Sentinel-1, and Artificial Neural Networks, J. Geov. Spat. Anal., 6, 19, 10.1007/s41651-022-00110-4
Kellogg, K., Hoffman, P., Standley, S., Shaffer, S., Rosen, P., Edelstein, W., Dunn, C., Baker, C., Barela, P., and Shen, Y. (2020, January 7–14). NASA-ISRO Synthetic Aperture Radar (NISAR) Mission. Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA.
Fan, 2020, Development and Application of a Networked Automatic Deformation Monitoring System, J. Geovisualization Spat. Anal., 4, 11, 10.1007/s41651-020-00051-w
Wang, 2021, First mapping of China surface movement using supercomputing interferometric SAR technique, Sci. Bull., 66, 1608, 10.1016/j.scib.2021.04.026
Cuccu, 2015, An On-Demand Web Tool for the Unsupervised Retrieval of Earth’s Surface Deformation from SAR Data: The P-SBAS Service within the ESA G-POD Environment, Remote Sens., 7, 15630, 10.3390/rs71115630
Chen, 2002, Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Trans. Geosci. Remote Sens., 40, 11, 10.1109/TGRS.2002.802453
Zhang, 2011, Phase Unwrapping for Very Large Interferometric Data Sets, IEEE Trans. Geosci. Remote Sens., 49, 4048, 10.1109/TGRS.2011.2130530
Yu, 2013, A Fast Phase Unwrapping Method for Large-Scale Interferograms, IEEE Trans. Geosci. Remote Sens., 51, 4240, 10.1109/TGRS.2012.2229284
Yuan, Z., Chen, T., Xing, X., Peng, W., and Chen, L. (2022). BM3D Denoising for a Cluster-Analysis-Based Multibaseline InSAR Phase-Unwrapping Method. Remote Sens., 14.
Du, 2021, Orbit error removal in InSAR/MTInSAR with a patch-based polynomial model, Int. J. Appl. Earth Obs. Geoinf., 102, 102438
Liang, 2019, Toward Mitigating Stratified Tropospheric Delays in Multitemporal InSAR: A Quadtree Aided Joint Model, IEEE Trans. Geosci. Remote Sens., 57, 291, 10.1109/TGRS.2018.2853706
Shi, 2021, An Improved Method for InSAR Atmospheric Phase Correction in Mountainous Areas, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 10509, 10.1109/JSTARS.2021.3113619
Goel, K., Adam, N., Shau, R., and Rodriguez-Gonzalez, F. (2016, January 10–15). Improving the reference network in wide-area Persistent Scatterer Interferometry for non-urban areas. Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China.
Xue, 2020, A Review of Time-Series Interferometric SAR Techniques: A Tutorial for Surface Deformation Analysis, IEEE Geosci. Remote Sens. Mag., 8, 22, 10.1109/MGRS.2019.2956165
Werner, C., Wegmuller, U., Strozzi, T., and Wiesmann, A. (2003, January 21–25). Interferometric point target analysis for deformation mapping. Proceedings of the IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France.
Li, 2014, A Hierarchical Multi-Temporal InSAR Method for Increasing the Spatial Density of Deformation Measurements, Remote Sens., 6, 3349, 10.3390/rs6043349
Hooper, 2008, A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophys. Res. Lett., 35, 16, 10.1029/2008GL034654
Hou, 2021, Block PS-InSAR ground deformation estimation for large-scale areas based on network adjustment, J. Geod., 95, 111, 10.1007/s00190-021-01561-1
Ge, D. (2013). Research on Key Technologies for Regional Ground Subsidence InSAR Monitoring. [Ph.D. Thesis, China University of Geosciences].
Liu, 2007, Calibrating and mosaicking surface velocity measurements from interferometric SAR data with a simultaneous least-squares adjustment approach, Int. J. Remote Sens., 28, 1217, 10.1080/01431160600904964
Hu, J. (2013). Theory and Methodology of InSAR Three-Dimensional Deformation Estimation Based on Modern Measurement Leveling. [Ph.D. Thesis, Central South University].
Kalia, 2017, A Copernicus downstream-service for the nationwide monitoring of surface displacements in Germany, Remote Sens. Environ., 202, 234, 10.1016/j.rse.2017.05.015
Murray, 2021, Cluster-Based Empirical Tropospheric Corrections Applied to InSAR Time Series Analysis, IEEE Trans. Geosci. Remote Sens., 59, 2204, 10.1109/TGRS.2020.3003271
Li, 2019, Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating, Earth-Sci. Rev., 192, 258, 10.1016/j.earscirev.2019.03.008
Wang, Y., Feng, G., Li, Z., Luo, S., Wang, H., Xiong, Z., Zhu, J., and Hu, J. (2022). A Strategy for Variable-Scale InSAR Deformation Monitoring in a Wide Area: A Case Study in the Turpan–Hami Basin, China. Remote Sens., 14.
Luo, S., Feng, G., Xiong, Z., Wang, H., Zhao, Y., Li, K., Deng, K., and Wang, Y. (2021). An Improved Method for Automatic Identification and Assessment of Potential Geohazards Based on MT-InSAR Measurements. Remote Sens., 13.
Zhong, 2019, Monitoring and Analysis of Ground Settlement in Changzhou City Based on Time-Series InSAR Technology, Geol. J. China Univ., 25, 131
Wang, 2018, Functional zoning of land consolidation in mountainous and hilly areas based on “Production-ecological” perspective: A case study of Qijiang District, Chongqing, Areal Res. Dev., 37, 155