An Extended Hückel Theory. I. Hydrocarbons

Journal of Chemical Physics - Tập 39 Số 6 - Trang 1397-1412 - 1963
Roald Hoffmann1
1Chemistry Department, Harvard University, Cambridge 38, Massachusetts

Tóm tắt

The Hückel theory, with an extended basis set consisting of 2s and 2p carbon and 1s hydrogen orbitals, with inclusion of overlap and all interactions, yields a good qualitative solution of most hydrocarbon conformational problems. Calculations have been performed within the same parametrization for nearly all simple saturated and unsaturated compounds, testing a variety of geometries for each. Barriers to internal rotation, ring conformations, and geometrical isomerism are among the topics treated. Consistent σ and π charge distributions and overlap populations are obtained for aromatics and their relative roles discussed. For alkanes and alkenes charge distributions are also presented. Failures include overemphasis on steric factors, which leads to some incorrect isomerization energies; also the failure to predict strain energies. It is stressed that the geometry of a molecule appears to be its most predictable quality.

Từ khóa


Tài liệu tham khảo

1950, Proc. Roy. Soc. (London), A202, 336

1951, Proc. R. Soc. London, 205, 357

1955, Can. J. Chem., 33, 1337, 10.1139/v55-162

1962, Bull. Chem. Soc. Japan, 35, 38, 10.1246/bcsj.35.38

1963, J. Chem. Phys., 38, 813, 10.1063/1.1733767

1953, Trans. Faraday Soc., 49, 1254, 10.1039/tf9534901254

1955, Chem. Rev., 55, 745, 10.1021/cr50004a005

1949, J. Chim. Phys., 46, 497, 10.1051/jcp/1949460497

1952, J. Chem. Phys., 20, 837, 10.1063/1.1700580

1962, J. Chem. Phys., 36, 2179, 10.1063/1.1732849

1962, J. Chem. Phys., 37, 2872, 10.1063/1.1733113

1955, J. Chem. Phys., 23, 1833, 10.1063/1.1740588

1960, Rev. Mod. Phys., 32, 211, 10.1103/RevModPhys.32.211

1960, Rev. Mod. Phys., 32, 239, 10.1103/RevModPhys.32.239

1959, Advan. Chem. Phys., 2, 367

1962, Progr. Stereochem., 3, 138

1960, J. Chem. Phys., 33, 1514, 10.1063/1.1731434

1960, J. Chem. Phys., 33, 1519, 10.1063/1.1731435

1962, J. Am. Chem. Soc., 84, 386, 10.1021/ja00862a015

1962, J. Am. Chem. Soc., 84, 2233, 10.1021/ja00870a041

1959, J. Am. Chem. Soc., 81, 3213, 10.1021/ja01522a014

1963, J. Chem. Phys., 38, 1934, 10.1063/1.1733899

1947, Chem. Rev., 41, 219, 10.1021/cr60129a003

1958, J. Chem. Phys., 28, 728, 10.1063/1.1744232

1950, J. Chem. Phys., 18, 1338, 10.1063/1.1747474

1963, Monatsh. Chem., 94, 23

1957, J. Chem. Phys., 27, 874, 10.1063/1.1743868

1957, J. Chem. Phys., 27, 868, 10.1063/1.1743867

1960, J. Chem. Phys., 32, 1595, 10.1063/1.1730988

1960, J. Chem. Phys., 32, 1873

1961, J. Chem. Phys., 35, 311, 10.1063/1.1731907

1961, J. Chem. Phys., 34, 1878, 10.1063/1.1731786

1951, J. Chem. Phys., 19, 1614

1961, Acta Cryst., 14, 1135, 10.1107/S0365110X6100334X

1944, J. Am. Chem. Soc., 66, 1974, 10.1021/ja01239a057

1949, Acta Chem. Scand., 3, 408, 10.3891/acta.chem.scand.03-0408

1958, J. Chem. Phys., 28, 608, 10.1063/1.1744200

1956, J. Org. Chem., 22, 214

1951, Z. Physik. Chem., 197, 75, 10.1515/zpch-1951-19708

1962, Tetrahedron, 17, 199, 10.1016/S0040-4020(01)99020-9

1962, J. Am. Chem. Soc., 84, 865, 10.1021/ja00864a038

1961, J. Chem. Phys., 35, 1738, 10.1063/1.1732138

1960, J. Chem. Phys., 32, 1873

1963, J. Chem. Phys., 38, 1607, 10.1063/1.1776931

1963, J. Am. Chem. Soc., 85, 846, 10.1021/ja00890a002

1962, Inorg. Chem., 1, 111, 10.1021/ic50001a022