An Explicit Formula for the Nonstationary Diffracted Wave Scattered on a NN-Wedge

Anel Esquivel Navarrete1, Anatoli Merzon1
1UMSNH, Morelia, Michoacan, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Babich, V.M., Lyalinov, M.A., Grikurov, V.E.: Diffraction Theory: The Sommerfeld-Malyuzhinets Technique. Alpha Science International (2007)

Bernard, J.M.L.: Diffraction by a metallic wedge covered by a dielectric material. Wave Motion 9, 543–561 (1987)

Bernard, J.M.L.: On the time domain scattering by a passive classical frequency dependent wedge-shaped region in a lossy dispersive medium. Ann. Telecommun. 49(11–12), 673–683 (1994)

Bernard, J.M.L., Pelosi, G., Manara, G., Freni, A.: Time domain scattering by an impedance wedge for skew incidence. In: Proceedings Conference ICEAA, pp. 11–14 (1991)

Bernard, J.M.L.: Progresses on the diffraction by a wedge: transient solution for line source illumination, single face contribution to scattered field, and new consequence of reciprocity on the spectral function. Rev. Tech. Thomson 25(4), 1209–1220 (1993)

Borovikov, V.A., Kinber, V.Y.: Geometrical Theory of Diffraction. The Institution of Electrical Engineers, London (1994)

Bouche, D., Molinet, F., Mittra, R.: Asymptotic Methods in Electromagnetics. Springer, Berlin (1995)

Castro, L.P., Kapanadze, D.: Exterior wedge diffraction problems with Dirichlet, Neumann and impedance boundary conditions. Acta Appl. Math. 110(1), 289–311 (2010)

Castro, L.P., Kapanadze, D.: Wave diffraction by a 270 degrees wedge sector with Dirichlet, Neumann and impedance boundary conditions. Proc. A. Razmadze Math. Inst. 01(155), 96–99 (2011)

Choque, A., Karlovich, Y., Merzon, A., Zhevandrov, P.: On the convergence of the amplitude of the diffracted nonstationary wave in scattering by wedges. Russ. J. Math. Phys. 19(3), 373–384 (2012)

Clemmow, P.C.: The Plane Wave Spectrum Representation of Electromagnetic Fields. Pergamon, Oxford (1966)

Duduchava, R., Tsaava, M.: Mixed boundary value problems for the Helmholtz equation in arbitrary 2D-sectors. Georgian Math. J. 20(3), 439–467 (2013)

Felsen, L.B.: Diffraction of the pulsed field from an arbitrarily oriented electric or magnetic dipole by a perfectly conducting wedge. SIAM J. Appl. Math. 26(2), 306–312 (1974)

Hewett, D.P., Ockendon, J.R., Allwright, D.J.: Switching on a two-dimensional time-harmonic scalar wave in the presence of a diffracting edge. Wave Motion 48(3), 197–213 (2011)

Keller, J., Blank, A.: Diffraction and reflection of pulses by wedges and corners. Commun. Pure Appl. Math. 4(1), 75–95 (1951)

Komech, A.I., Mauser, N.J., Merzon, A.E.: On Sommerfeld representation and uniqueness in scattering by wedges. Math. Methods Appl. Sci. 28, 147–183 (2005)

Komech, A.I., Merzon, A.E.: Limiting amplitude principle in the scattering by wedges. Math. Methods Appl. Sci. 29, 1147–1185 (2006)

Komech, A.I., Merzon, A.E., De la Paz Mendez, J.E.: On justifcation of Sobolev’s formula for diffraction by wedge. http://arxiv.org/submit/0988200

Komech, A., Merzon, A., Zhevandrov, P.: A method of complex characteristics for elliptic problems in angles and its applications. Transl. Am. Math. Soc. 206(2), 125–159 (2002)

Komech, A.I., Merzon, A.E.: Relation between Cauchy data for the scattering by a wedge. Russ. J. Math. Phys. 14(3), 279–303 (2007)

Komech, A.I.: Linear partial differential equations with constant coefficients. In: Egorov Yu, E., Komech, A.I., Shubin, M.A. (eds.) Elements of the Modern Theory of Partial Differential Equations, pp. 127–260. Springer, Berlin (1999)

Malyuzhinets, G.D.: Excitation, reflection and emission of the surface waves on a wedge with given impedances of the sides. Dokl. Akad. Nauk SSSR 121(3), 436–439 (1958)

Malyuzhinets, G.D.: Inversion formula for the Sommerfeld integral. Sov. Phys. Dokl. 3, 52–56 (1958)

Meister, E., Penzel, F., Speck, F.O., Teixeira, F.S.: Some interior and exterior boundary-value problems for the Helmholtz equations in a quadrant. Proc. R. Soc. Edinb. A 123(2), 275–294 (1993)

Meister, E., Speck, F.O., Teixeira, F.S.: Wiener-Hopf-Hankel operators for some wedge diffraction problems with mixed boundary conditions. J. Integral Equ. Appl. 4(2), 229–255 (1992)

Merzon, A., De la Paz Mendez, J.E.: DN-Scattering of a plane wave by wedges. Math. Methods Appl. Sci. 34(15), 1843–1872 (2011). http://onlinelibrary.wiley.com/doi/10.1002/mma.1484/abstract

Merzon, A.E., Speck, F.O., Villalba, T.J.: On the weak solution of the Neumann problem for the 2D Helmholtz equation in a convex cone and H s regularity. Math. Methods Appl. Sci. 34(1), 24–43 (2011)

Oberhettinger, F.: Diffraction of waves by a wedge. Commun. Pure Appl. Math. 7(3), 551–563 (1954)

Oberhettinger, F.: On the diffraction and reflection of waves and pulses by wedges and corners. J. Res. Natl. Inst. Stan. 61(2) (1958)

Petrashen, C.I., Nikolaev, V.G., Kouzov, D.P.: On the series method in the theory of diffraction waves by polygonal regions. Nauch. Zap. LGU 246(5), 5–70 (1958) (in Russian)

Rottbrand, K.: Exact solution for time-dependent diffraction of plane waves by semi-infinite soft/hard wedges and half-planes. Preprint, 1984, Technical University Darmstadt (1998)

Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)

Sobolev, S.L.: Theory of Diffraction of Plane Waves. Proc. of Seis. Inst., vol. 41. Russian Academy of Science, Leningrad (1934)

Sobolev, S.L.: General theory of diffraction of waves on Riemann surfaces. Tr. Fiz.-Mat. Inst. Steklova 9, 39–105 (1935) (Russian) (English translation: Sobolev S.L.: General theory of diffraction of waves on Riemann surfaces, in: Selected Works of S.L. Sobolev, I, Springer, New York, pp. 201–262 (2006))

Sobolev, S.L.: On the problem of diffraction of plane waves. In: Frank, F., Mises, R. (eds.) Differential and Integral Equations of Mathematical Physics, pp. 605–616. ONTI, Leningrad (1937). (in Russian)

Sommerfeld, A.: Mathematische Theorie der Diffraction. Math. Ann. 47, 317–341 (1896)

Merzon, A.E., Zhevandrov, P.N.: On the Neumann problem for the Helmholtz equation in a plane angle. Math. Methods Appl. Sci. 23(16), 1401–1446 (2000)