An Ergodic Decomposition Defined by Regular Jointly Measurable Markov Semigroups on Polish Spaces

Acta Applicandae Mathematicae - Tập 116 - Trang 27-53 - 2011
Daniël T. H. Worm1, Sander C. Hille1
1Mathematical Institute, University Leiden, Leiden, The Netherlands

Tóm tắt

For a regular jointly measurable Markov semigroup on the space of finite Borel measures on a Polish space we give a Yosida-type decomposition of the state space, which yields a parametrisation of the ergodic probability measures associated to this semigroup in terms of subsets of the state space. In this way we extend results by Costa and Dufour (J. Appl. Probab. 43:767–781, 2006). As a consequence we obtain an integral decomposition of every invariant probability measure in terms of the ergodic probability measures. Our approach is completely centered around the reduction to and relationship with the case of a single regular Markov operator associated to the Markov semigroup, the resolvent operator, which enables us to fully exploit results in that situation (Worm and Hille in Ergod. Theory Dyn. Syst. 31(2):571–597, 2011).

Tài liệu tham khảo

Aliprantis, C., Border, K.: Infinite Dimensional Analysis. A Hitchhiker’S Guide, 3rd edn. Springer, Berlin (2006) Aliprantis, C., Burkinshaw, O.: Positive Operators. Academic Press, New York (1985) Arendt, W., Batty, C., Hieber, N., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel (2001) Bauer, H.: Measure and Integration Theory. de Gruyter, Berlin (2001) Beboutov, M.: Markov chains with a compact state space. Rec. Math. (Mat. Sb.) 10(52), 213–238 (1942) Bogachev, V.I.: Measure Theory, vol. II. Springer, Berlin (2007) Costa, O., Dufour, F.: Ergodic properties and ergodic decompositions of continuous-time Markov processes. J. Appl. Probab. 43, 767–781 (2006) Da Prato, G., Zabczyk, J.: Ergodicity for infinite-dimensional systems. London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (2006) Dudley, R.M.: Convergence of Baire measures. Stud. Math. 27, 251–268 (1966) Dynkin, E.B.: Sufficient statistics and extreme points. Ann. of Prob. 6, 705–730 Es-Sarhir, A.: Existence and uniqueness of invariant measures for a class of transition semigroups on Hilbert spaces. J. Math. Anal. Appl. 353, 497–507 (2009) Ethier, S.N., Kurtz, T.G.: Markov Processes; Characterization and Convergence. Wiley, New York (1986) Folland, G.B.: Real Analysis, Modern Techniques and Their Applications. Wiley, New York (1984) Gacki, H.: Applications of the Kantorovich-Rubinstein maximum principle in the theory of Markov semigroups. Diss. Math. 448 (2007) Goldys, B., van Neerven, J.M.A.M.: Transition semigroups of Banach space-valued Ornstein-Uhlenbeck processes. Acta Appl. Math. 76, 283–330 (2003) Hairer, M., Mattingly, J.C.: A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, preprint (2008) Hernández-Lerma, O., Lasserre, J.B.: Ergodic theorems and ergodic decomposition for Markov chains. Acta Appl. Math. 54, 99–119 (1998) Hernández-Lerma, O., Lasserre, J.B.: Markov Chains and Invariant Probabilities. Birkhäuser, Basel (2003) Hille, S.C., Worm, D.T.H.: Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures. Integral Equ. Oper. Theory 63, 351–371 (2009) Hille, S.C., Worm, D.T.H.: Continuity properties of Markov semigroups and their restrictions to invariant L 1-spaces. Semigroup Forum 79, 575–600 (2009) Komorowski, T., Peszat, S., Szarek, T.: On ergodicity of some Markov processes. Ann. Probab. 38(4), 1401–1443 (2010) Krylov, N., Bogolioubov, N.: La théorie générale de la mesure dans son application à l’étude des systèmes de la mécanique non linéaire. Ann. Math. 38, 65–113 (1937) Lant, T., Thieme, H.R.: Markov transition functions and semigroups of measures. Semigroup Forum 74, 337–369 (2007) Lasota, A., Szarek, T.: Lower bound technique in the theory of a stochastical differential equation. J. Differ. Equ. 231, 513–533 (2006) Manca, L.: Kolmogorov equations for measures. J. Evol. Equ. 8, 231–262 (2008) Myjak, J., Szarek, T.: Attractors of iterated function systems and Markov operators. Abstr. Appl. Anal. 8, 479–502 (2003) Petersen, K.: Ergodic Theory. Cambridge University Press, Cambridge (1983) Sharpe, M.: General Theory of Markov Processes. Academic Press, London (1988) Szarek, T., Śleczka, M., Urbánski, M.: On stability of velocity vectors for some passive tracer models. Bull. Lond. Math. Soc. 42, 923–936 (2010) Szarek, T., Worm, D.T.H.: Ergodic measures of Markov semigroups with the e-property. Ergod. Theory Dyn. Syst. (2011). doi:10.1017/S0143385711000022 Varadhan, S.R.S: Probability Theory. Courant Lecture Notes in Mathematics, vol. 7. Am. Math. Soc., Providence (2001) Worm, D.T.H., Hille, S.C.: Ergodic decompositions associated to regular Markov operators on Polish spaces. Ergod. Theory Dyn. Syst. 31(2), 571–597 (2011) Worm, D.T.H., Hille, S.C.: Equicontinuous families of Markov operators on complete separable metric spaces with applications to ergodic decompositions and existence, uniqueness and stability of invariant measures (submitted) Worm, D.T.H.: Semigroups on spaces of measures. PhD thesis, Leiden University (2010) Yosida, K.: Simple Markoff process with a locally compact phase space. Math. Jpn. 1, 99–103 (1948) Zaharopol, R.: Invariant Probabilities of Markov-Feller Operators and Their Supports. Birkhäuser, Basel (2005) Zaharopol, R.: An ergodic decomposition defined by transition probabilities. Acta Appl. Math. 104, 47–81 (2008)