An Emerging Role for Galectins in Tuning the Immune Response: Lessons from Experimental Models of Inflammatory Disease, Autoimmunity and Cancer

Scandinavian Journal of Immunology - Tập 66 Số 2-3 - Trang 143-158 - 2007
Gabriel A. Rabinovich1,2, Fu-Tong Liu3, Mitsuomi Hirashima4,5, Ana C. Anderson6
1Department of Immunopathology, Institute of Biology and Experimental Medicine (IBYME/ CONICET), Buenos Aires, Argentina
2Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina
3Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
4GalPharma Co. Ltd, Kagawa, Japan
5Immunology and Immunopathology, School of Medicine, Kagawa University, Kagawa, Japan
6Center for Neurologic Diseases, Brigham and Women’s Hospital Harvard Medical School, Boston, MA, USA

Tóm tắt

AbstractInflammation is a critical process for eliminating pathogens, but can lead to serious deleterious effects if left unchecked. Identifying the endogenous factors that control immune tolerance and inflammation is a key goal in the field of immunology. Galectins, a family of endogenous lectins with affinity for β‐galactoside‐containing oligosaccharides, are expressed by several cells of the immune system and tissue‐resident stromal cells. According to their architecture, this family of glycan‐binding proteins is classified in those containing one‐carbohydrate‐recognition domain (CRD) (proto‐type), those containing two‐CRD joined by a linker non‐lectin domain (tandem‐repeat) and those that have one‐CRD attached to an N‐terminal peptide (chimera‐type). Accumulating evidence indicates that galectins play critical regulatory roles in immune cell response and homeostasis. In this review, we summarize recent developments in our understanding of the galectins’ roles within different immune cell compartments, and in the broader context of the inflammatory microenvironments. In particular we illustrate the immunoregulatory role of three representative members of each galectin subfamily: galectin‐1, ‐3 and ‐9. This body of knowledge, documenting the coming of age of galectins as potential immunosuppressive agents or targets for anti‐inflammatory drugs, represents a sound basis to further explore their potential as novel therapies for autoimmune diseases, chronic inflammation and cancer.

Từ khóa


Tài liệu tham khảo

10.1038/ni1002-903

Leffler H, 2004, Introduction to galectins, Glycoconj J, 19, 422

10.1093/glycob/cwl025

10.1093/glycob/9.10.979

10.1016/S0304-4165(02)00312-4

10.1038/nrc1527

10.1016/S1471-4906(02)02232-9

10.1002/(SICI)1521-4141(199808)28:08<2311::AID-IMMU2311>3.0.CO;2-G

10.4049/jimmunol.160.10.4831

10.1189/jlb.70.1.73

10.1093/intimm/dxl060

10.1182/blood-2006-04-016451

10.1038/labinvest.3700432

10.1182/blood-2007-01-069229

10.1016/j.cytogfr.2007.01.006

10.1084/jem.185.10.1851

10.1038/378736a0

10.1093/oxfordjournals.jbchem.a021762

10.1038/sj.cdd.4401009

10.4049/jimmunol.176.2.778

10.4049/jimmunol.167.10.5697

10.4049/jimmunol.163.7.3801

10.1093/glycob/cwl037

10.1074/jbc.M209595200

10.1038/sj.cdd.4400708

10.1074/jbc.M409752200

10.1038/sj.cdd.4401628

10.1016/j.cellsig.2006.02.007

10.1038/sj.cdd.4401485

10.1002/eji.200425340

Vespa GN, 1999, Galectin‐1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL‐2 production and proliferation, J Immunol, 162, 799, 10.4049/jimmunol.162.2.799

10.4049/jimmunol.165.7.3722

10.1046/j.1365-2567.1999.00746.x

10.1016/j.molimm.2006.02.011

10.1084/jem.190.3.385

10.1002/hep.510310220

10.1016/S0016-5085(03)00267-1

10.4049/jimmunol.176.10.6323

10.4049/jimmunol.177.8.5278

10.1016/j.clim.2003.08.003

10.1016/S1535-6108(04)00024-8

10.1038/labinvest.3700420

10.1073/pnas.202323999

10.4049/jimmunol.177.2.796

10.1016/j.molimm.2006.06.001

10.1093/glycob/cwg010

10.4049/jimmunol.178.1.436

10.4049/jimmunol.177.1.216

10.4049/jimmunol.176.12.7207

10.1002/(SICI)1521-4141(200005)30:5<1331::AID-IMMU1331>3.0.CO;2-H

10.1016/S0002-9440(10)63507-9

10.1182/blood-2006-03-007153

10.1002/eji.1830130613

10.1016/0165-5728(90)90032-I

10.1167/iovs.05-1234

10.1200/JCO.2005.02.0206

10.1016/S0304-4165(99)00177-4

10.1159/000084545

10.1016/j.bbrc.2005.10.033

10.1016/j.cub.2005.12.046

10.1023/B:GLYC.0000014088.21242.e0

10.1023/B:GLYC.0000014082.99675.2f

10.1016/S0304-4165(02)00313-6

10.1189/jlb.69.4.555

10.1097/01.MIB.0000225341.37226.7c

Fukumori T, 2003, CD29 and CD7 mediate galectin‐3‐induced type II T‐cell apoptosis, Cancer Res, 63, 8302

10.1093/glycob/cwi026

10.1016/S0002-9440(10)63177-X

10.1073/pnas.93.13.6737

10.1016/S0002-9440(10)64975-9

Harjacek M, 2001, Expression of galectins‐1 and ‐3 correlates with defective mononuclear cell apoptosis in patients with juvenile idiopathic arthritis, J Rheumatol, 28, 1914

10.1016/S0076-6879(06)17018-4

10.1016/S0014-5793(00)01547-7

10.1016/S0300-9084(01)01289-5

10.2353/ajpath.2007.060389

10.4049/jimmunol.156.10.3939

10.4049/jimmunol.168.4.1813

10.1002/(SICI)1521-4141(199809)28:09<2864::AID-IMMU2864>3.0.CO;2-U

10.1016/j.bbrc.2006.12.081

10.1159/000059408

Hsu DK, 1996, Human T lymphotropic virus‐1 infection of human T lymphocytes induces expression of the β‐galactose‐binding lectin, galectin‐3, Am J Pathol, 148, 1661

10.1016/0014-5793(96)01031-9

10.1038/35055582

10.1021/bi00081a007

Liu FT, 1995, Expression and function of galectin‐3, a β‐galactoside‐binding lectin, in human monocytes and macrophages, Am J Pathol, 147, 1016

10.1016/0165-2478(94)90072-8

10.1189/jlb.1204702

10.4049/jimmunol.165.4.2156

Cortegano I, 1998, Galectin‐3 down‐regulates IL‐5 gene expression on different cell types, J Immunol, 161, 385, 10.4049/jimmunol.161.1.385

10.1172/JCI200317592

10.4049/jimmunol.177.8.4991

10.2353/ajpath.2006.050636

10.1046/j.1365-2567.1998.00517.x

10.1016/S0002-9440(10)63255-5

10.1164/rccm.2111031

10.4049/jimmunol.176.3.1943

10.1136/bjo.85.11.1336

10.1002/art.11287

Nachtigal M, 1998, Galectin‐3 expression in human atherosclerotic lesions, Am J Pathol, 152, 1199

10.1016/S0006-291X(02)00637-X

10.1023/A:1012240719801

10.1007/BF01541323

Suarez‐Alvarez B, 2001, Circulating IgG response to stromelysin‐3, collagenase‐3, galectin‐3 and mesothelin in patients with pharynx/larynx squamous cell carcinoma, Anticancer Res, 21, 3677

10.1038/415536a

10.1038/ni988

10.1038/ni1271

10.1172/JCI119429

10.4049/jimmunol.170.7.3631

10.1023/A:1023668705040

10.1172/JCI25308

10.1016/j.febslet.2005.02.054

10.1074/jbc.273.27.16976

10.1074/jbc.272.10.6416

10.1074/jbc.275.12.8355

10.4049/jimmunol.168.4.1961

10.1159/000058002

10.1159/000101414

10.1164/rccm.200608-1243OC

10.1093/glycob/12.2.111

10.1016/j.clim.2007.04.015

10.4049/jimmunol.169.10.5912

10.1016/j.biocel.2004.07.014

10.1074/jbc.M302693200

10.1128/JVI.78.9.4947.2004

10.1111/j.0818-9641.2004.01248.x

10.1093/glycob/cwm045

10.1111/j.1365-3024.2005.00749.x

10.1023/B:GLYC.0000025817.24297.17

Kasamatsu A, 2005, Galectin‐9 as a regulator of cellular adhesion in human oral squamous cell carcinoma cell lines, Int J Mol Med, 16, 269

10.1002/ijc.10436

10.1158/1078-0432.CCR-04-0861

10.1111/j.1075-122X.2006.00334.x

10.1128/JVI.79.21.13326-13337.2005

10.1186/1471-2407-6-283

10.1002/ijc.22534

10.4049/jimmunol.175.5.2974

Glinsky GV, 1996, Inhibition of human breast cancer metastasis in nude mice by synthetic glycoamines, Cancer Res, 56, 5319

10.1093/glycob/cwj056

10.1093/jnci/94.24.1854

10.1002/1439-7633(20011105)2:11<822::AID-CBIC822>3.0.CO;2-W

10.1016/S0076-6879(03)01050-4

10.1016/j.bmcl.2005.02.079

10.2174/092986706779026219