Giải Pháp Hiệu Quả cho Phân Loại Naïve Bayes Duy Trì Tính Riêng Tư Trong Mô Hình Dữ Liệu Phân Tán Hoàn Toàn
Tóm tắt
Từ khóa
#khai phá dữ liệu và học máy đảm bảo tính riêng tư; tính toán bảo mật nhiều thành viên; phân lớp Naïve Bayes; mã hóa đồng cấu; tính riêng tư của dữ liệuTài liệu tham khảo
Y. Lindell and B. Pinkas, “Secure Multiparty Computation for Privacy-Preserving Data Mining,” J. Priv. Confidentiality, vol. 1, no. 1, pp. 59–98, 2009, doi: https://doi.org/10.29012/jpc.v1i1.566.
M. Kantarcıoˇglu, J. Vaidya, and C. Clifton, “Privacy Preserving Naive Bayes Classifier for Horizontally Partitioned Data,” presented at the IEEE ICDM workshop on privacy preserving data mining, 1-7, 2003. [Online]. Available: http://www.cis.syr.edu/~wedu/ppdm2003/papers/1.pdf
J. Vaidya, M. Kantarcioglu, and C. Clifton, “Privacy-preserving Naïve Bayes classification,” VLDB J., vol. 17, pp. 879–898, 2008, doi: https://doi.org/10.1007/s00778-006-0041-y.
B. Schneier, Applied Cryptography, 2nd ed. John Wiley & Sons, 1996.
C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools for Privacy Preserving Distributed Data Mining,” ACM SIGKDD Explor. Newsl., vol. 4, no. 2, pp. 28–34, 2002, doi: https://doi.org/10.1145/772862.772867.
Z. Yang, S. Zhong, and R. N. Wright, “Privacy-Preserving Classiflcation of Customer Data without Loss of Accuracy,” in Proceedings of the 2005 SIAM International Conference on Data Mining, 2005, pp. 92–102. doi: https://doi.org/10.1137/1.9781611972757.9.
X. Yi and Y. Zhang, “Privacy-preserving Naive Bayes classification on distributed data via semi-trusted mixers,” Inf. Syst., vol. 34, pp. 371–380, 2009, doi: https://doi.org/10.1016/j.is.2008.11.001.
M. E. Skarkala, M. Maragoudakis, S. Gritzalis, and L. Mitrou, “PPDM-TAN: A Privacy-Preserving Multi-Party Classifier,” Computation, vol. 9, no. 6, pp. 1–25, 2021, doi: https://doi.org/10.3390/computation9010006.
P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,” in International Conference on the Theory and Applications of Cryptographic Techniques, 1999, pp. 223–238. doi: https://doi.org/10.1007/3-540-48910-X_16.
C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the forty-first annual ACM symposium on Theory of computing, 2009, pp. 169–178. doi: https://doi.org/10.1145/1536414.1536440.
P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen, “Privacy-preserving outsourced classification in cloud computing,” Clust. Comput., vol. 21, pp. 277–286, 2018, doi: https://doi.org/10.1007/s10586-017-0849-9.
M. Huai, L. Huang, W. Yang, L. Li, and M. Qi, “Privacy-preserving Naive Bayes classification,” in International conference on knowledge science, engineering and management, 2015, pp. 627–638. doi: https://doi.org/10.1007/978-3-319-25159-2_57.
T. Li, J. Li, Z. Liu, P. Li, and C. Jia, “Differentially private Naive Bayes learning over multiple data sources,” Inf. Sci., vol. 444, pp. 89–104, 2018, doi: https://doi.org/10.1016/j.ins.2018.02.056.
P. Li, T. Li, H. Ye, J. Li, X. Chen, and Y. Xiang, “Privacy-preserving machine learning with multiple data providers,” Future Gener. Comput. Syst., vol. 87, pp. 341–350, 2018, doi: https://doi.org/10.1016/j.future.2018.04.076.
V. Duy Hien, L. The Dung, and H. Tu Bao, “An efficient approach for secure multi-party computation without authenticated channel,” Inf. Sci., vol. 527, pp. 356–368, 2020, doi: https://www.doi.org/10.1016/j.ins.2019.07.031.
O. Goldreich, “Basic Applications,” in Foundations of Cryptography, vol. II, Cambridge University Press, 2004.
F. Hao, P. Y. A. Ryan, and P. Zielin´ski, “Anonymous voting by two-round public discussion,” IET Inf. Secur., vol. 4, no. 2, pp. 62–67, 2010, doi: https://doi.org/10.1049/iet-ifs.2008.0127.
H. Hofmann, “Statlog (German Credit Data) Data Set,” 1994. https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)