An Effective Convolutional Neural Network for Classifying Red Blood Cells in Malaria Diseases

Quan Quan1, Jianxin Wang1, Liangliang Liu1,2
1School of Computer Science and Engineering, Central South University, Changsha, People’s Republic of China
2Department of Network Center, Pingdingshan University, Pingdingshan, People’s Republic of China

Tóm tắt

Malaria is one of the epidemics that can cause human death. Accurate and rapid diagnosis of malaria is important for treatment. Due to the limited number of data and human factors, the prediction performance and reliability of traditional classification methods are often affected. In this study, we propose an efficient and novel classification network named Attentive Dense Circular Net (ADCN) which based on Convolutional Neural Networks (CNN). The ADCN is inspired by the ideas of residual and dense networks and combines with the attention mechanism. We train and evaluate our proposed model on a publicly available red blood cells (RBC) dataset and compare ADCN with several well-established CNN models. Compared to other best performing CNN model in our experiments, ADCN shows superiority in all performance criteria such as accuracy (97.47% vs 94.61%), sensitivity (97.86% vs 95.20%) and specificity (97.07% vs 92.87%). Finally, we discuss the obtained results and analyze the difficulties of RBCs classification.

Tài liệu tham khảo

Caraballo H, King K (2014) Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg Med Pract 16(5):1–23 Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM (2017) World malaria report: time to acknowledge plasmodium knowlesi malaria. Malaria J 1(16):1–3. https://doi.org/10.1186/s12936-017-1787-y Somasekar J, Rama Mohan Reddy A, Sreenivasulu Reddy L (2012) An efficient algorithm for automatic malaria detection in microscopic blood images. In: Global trends in information systems and software applications, pp 431–440. https://doi.org/10.1007/978-3-642-29216-3_47 Prasad K (2012) Image analysis approach for development of a decision support system for detection of malaria parasites in thin blood smear images. J Digit Imaging 25(4):542–549. https://doi.org/10.1007/s10278-011-9442-6 Arco JE, Górriz JM, Ramírez J, Álvarez I, Puntonet CG (2015) Digital image analysis for automatic enumeration of malaria parasites using morphological operations. Expert Syst Appl 42(6):3041–3047. https://doi.org/10.1016/j.eswa.2014.11.037 Rosado L, Da Costa JMC, Elias D, Cardoso JS (2016) Automated detection of malaria parasites on thick blood smears via mobile devices. Procedia Comput Sci 90:138–144. https://doi.org/10.1016/j.procs.2016.07.024 Purnama IKE, Rahmanti FZ, Purnomo MH (2013) Malaria parasite identification on thick blood film using genetic programming. In: 2013 3rd international conference on instrumentation, communications, information technology and biomedical engineering, IEEE, pp 194–198. https://doi.org/10.1109/ICICI-BME.2013.6698491 Chakrabortya K, Chattopadhyayb A, Chakrabarti A, Acharyad T, Dasguptae AK (2015) A combined algorithm for malaria detection from thick smear blood slides. J Health Med Inf 6(1):645–652. https://doi.org/10.4172/2157-7420.1000179 Memeu DM, Kaduki KA, Mjomba A, Muriuki NS, Gitonga L (2013) Detection of plasmodium parasites from images of thin blood smears. Open J Clin Diagnost 3(04):183. https://doi.org/10.4236/ojcd.2013.34034 Charpe K, Bairagi V, Desarda S, Barshikar S (2015) A novel method for automatic detection of malaria parasite stage in microscopic blood image. In J Comput Appl 128(17):32–37. https://doi.org/10.5120/ijca2015906763 Liang Z, Powell A, Ersoy I, Poostchi M, Silamut K, Palaniappan K, Guo P, Hossain MA, Sameer A, Maude RJ et al (2016) CNN-based image analysis for malaria diagnosis. In: International conference on bioinformatics and biomedicine, IEEE, pp 493–496. https://doi.org/10.1109/BIBM.2016.7822567 Rajaraman S, Antani S, Poostchi M, Silamut K, Hossain M, Maude R, Jaeger S, Thoma G (2018) Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ. https://doi.org/10.7717/peerj.4568 Abualigah LM, Khader AT, Hanandeh ES (2018) A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125. https://doi.org/10.1016/j.engappai.2018.05.003 Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795. https://doi.org/10.1007/s11227-017-2046-2 Abualigah LM, Khader AT, Hanandeh ES (2018a) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48(11):4047–4071. https://doi.org/10.1007/s10489-018-1190-6 Abualigah LM, Khader AT, Hanandeh ES (2018b) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466. https://doi.org/10.1016/j.jocs.2017.07.018 Alomari OA, Khader AT, Al-Betar MA, Abualigah LM (2017) Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm. Int J Data Min Bioinformat 19(1):32–51. https://doi.org/10.1504/IJDMB.2017.088538 Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, Zackheim H, Duvic M, Estrach T, Lamberg S et al (2007) Revisions to the staging and classification of mycosis fungoides and sezary syndrome: a proposal of the international society for cutaneous lymphomas (ISCL) and the cutaneous lymphoma task force of the european organization of research and treatment of cancer (EORTC). Blood 110(6):1713–1722. https://doi.org/10.1182/blood-2007-03-055749 Pimpinelli N, Olsen EA, Santucci M, Vonderheid E, Haeffner AC, Stevens S, Burg G, Cerroni L, Dreno B, Glusac E et al (2005) Defining early mycosis fungoides. J Am Acad Dermatol 53(6):1053–1063. https://doi.org/10.1016/j.jaad.2005.08.057 Kim YH, Willemze R, Pimpinelli N, Whittaker S, Olsen EA, Ranki A, Dummer R, Hoppe RT (2007) TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and sezary syndrome: a proposal of the international society for cutaneous lymphomas (ISCL) and the cutaneous lymphoma task force of the european organization of research and treatment of cancer (EORTC). Blood 110(2):479–484. https://doi.org/10.1182/blood-2006-10-054601 Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, Ralfkiaer E, Chimenti S, Diaz-Perez JL, Duncan LM et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105(10):3768–3785. https://doi.org/10.1182/blood-2004-09-3502 Burg G, Kempf W, Cozzio A, Feit J, Willemze R, Jaffe S, Dummer R, Berti E, Cerroni L, Chimenti S et al (2005) WHO/EORTC classification of cutaneous lymphomas 2005: histological and molecular aspects. J Cutaneous Pathol 32(10):647–674. https://doi.org/10.1111/j.0303-6987.2005.00495.x Liu L, Wu FX, Wang J (2019a) Efficient multi-kernel DCNN with pixel dropout for stroke MRI segmentation. Neurocomputing 350:117–127. https://doi.org/10.1016/j.neucom.2019.03.049 Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J (2019b) Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality mri. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04096-x Jiang Y, Wang J, Liang Y, Xia J (2019) Combining static and dynamic features for real-time moving pedestrian detection. Multimedia Tools Appl 78(3):3781–3795. https://doi.org/10.1007/s11042-018-6057-7 Ni P, Huang N, Zhang Z, Wang DP, Liang F, Miao Y, Xiao CL, Luo F, Wang J (2019) Deepsignal: detecting dna methylation state from nanopore sequencing reads using deep-learning. Bioinformatics 35(22):4586–4595. https://doi.org/10.1093/bioinformatics/btz276 An Y, Huang N, Chen X, Wu F, Wang J (2019) High-risk prediction of cardiovascular diseases via attention-based deep neural networks. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2019.2935059 Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K (1989) Phoneme recognition using time-delay neural networks. IEEE Trans Acoust Speech Signal Process 37(3):328–339. https://doi.org/10.1109/29.21701 LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791 Simard PY, Steinkraus D, Platt JC (2003) Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the seventh international conference on document analysis and recognition-volume 2, IEEE Computer Society, p 958, https://doi.org/10.1109/ICDAR.2003.1227801 Vaillant R, Monrocq C, Le Cun Y (1994) Original approach for the localisation of objects in images. IEE Proc Vis Image Signal Process 141(4):245–250. https://doi.org/10.1049/ip-vis:19941301 Lu C, Yang M, Luo F, Wu FX, Li M, Pan Y, Li Y, Wang J (2018) Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics 34(19):3357–3364. https://doi.org/10.1093/bioinformatics/bty327 Luo H, Li M, Yang M, Wu FX, Li Y, Wang J (2020) Biomedical data and computational models for drug repositioning: a comprehensive review. Brief Bioinformat. https://doi.org/10.1093/bib/bbz176 Yu Y, Li M, Liu L, Fei Z, Wu FX, Wang J (2019) Automatic ICD code assignment of chinese clinical notes based on multilayer attention BiRNN. J Biomed Inform 91:103114. https://doi.org/10.1016/j.jbi.2019.103114 Kong Y, Gao J, Xu Y, Pan Y, Wang J, Liu J (2019) Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 324(9):63–68. https://doi.org/10.1016/j.neucom.2018.04.080 Liu J, Wang J, Tang Z, Hu B, Wu FX, Pan Y (2018) Improving alzheimeres disease classification by combining multiple measures. IEEE/ACM Trans Comput Biol Bioinf 15(5):1649–1659. https://doi.org/10.1109/tcbb.2017.2731849 Liu L, Chen S, Zhu X, Zhao XM, Wu FX, Wang J (2019) Deep convolutional neural network for accurate segmentation and quantification of white matter hyperintensities. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.12.050 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105. https://doi.org/10.1145/3065386 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp 770–778. https://doi.org/10.1109/CVPR.2016.90 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp 4700–4708. https://doi.org/10.1109/CVPR.2017.243 Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J (2017) Dual path networks. arXiv:1707.01629 Gopakumar G, Swetha M, Sai SG, Sai SG (2018) Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. J Biophoton. https://doi.org/10.1002/jbio.201700003 Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164. https://doi.org/10.1109/CVPR.2017.683 Ersoy I, Bunyak F, Higgins JM, Palaniappan K (2012) Coupled edge profile active contours for red blood cell flow analysis. In: IEEE international symposium on biomedical imaging, IEEE, pp 748–751. https://doi.org/10.1109/ISBI.2012.6235656 Fu J, Zheng H, Mei T (2017) Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4438–4446. https://doi.org/10.1109/CVPR.2017.476 Zheng H, Fu J, Mei T, Luo J (2017) Learning multi-attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE international conference on computer vision, pp 5209–5217. https://doi.org/10.1109/ICCV.2017.557 Pedersoli M, Lucas T, Schmid C, Verbeek J (2017) Areas of attention for image captioning. In: Proceedings of the IEEE international conference on computer vision, pp 1242–1250. https://doi.org/10.1109/ICCV.2017.140 Chen W, Chen X, Zhang J, Huang K (2017) Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 403–412. https://doi.org/10.1109/CVPR.2017.145 Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, Springer, pp 177–186. https://doi.org/10.1007/978-3-7908-2604-3_16 Liao X, Li M, Zou Y, Wu F, Pan Y, Wang J (2019) An efficient trimming algorithm based on multi-feature fusion scoring model for ngs data. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2019.2897558 Luo H, Wang J, Yan C, Li M, Wu F, Pan Y (2019) A novel drug repositioning approach based on collaborative metric learning. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2019.2926453 Yang M, Luo H, Li Y, Wu FX, Wang J (2019) Overlap matrix completion for predicting drug-associated indications. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1007541