Phân Tích Các Sơ Đồ Thể Tích Hữu Hạn và Bất Đẳng Thức Lyapunov Rời Rạc cho Hệ Thống Hoá Hướng

Springer Science and Business Media LLC - Tập 87 - Trang 1-47 - 2021
Guanyu Zhou1,2
1School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China
2Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China

Tóm tắt

Chúng tôi phân tích hai sơ đồ thể tích hữu hạn, tuyến tính và phi tuyến, cho hệ thống hóa hướng trong miền hai chiều, bảo tồn khối lượng và tính dương mà không cần điều kiện CFL. Đối với sơ đồ phi tuyến, tính nghiệm được chứng minh bằng cách sử dụng lý thuyết điểm cố định của Brouwer, và chúng tôi chỉ ra sự hội tụ của phép lặp Picard. Chúng tôi cũng nghiên cứu hai hàm Lyapunov rời rạc, ổn định tiệm cận của trạng thái cân bằng và tính ổn định cục bộ. Hơn nữa, chúng tôi áp dụng lý thuyết bán nhóm rời rạc để phân tích lỗi và thu được tỷ lệ hội tụ $$O(\tau +h)$$ trong chuẩn $$L^p$$. Các kết quả lý thuyết được xác nhận bởi các thí nghiệm số.

Từ khóa

#hệ thống hóa hướng #sơ đồ thể tích hữu hạn #lý thuyết điểm cố định #hàm Lyapunov #ổn định tiệm cận #phân tích lỗi

Tài liệu tham khảo

Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235, 4015–4031 (2011) Bessemoulin-Chatard, M., Chainais-Hilliairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35, 1125–1149 (2015) Bessemoulin-Chatard, M., Jüngel, A.: A finite volume scheme for a Keller–Segel model with additional cross-diffusion. IMA. J. Numer. 34, 96–122 (2014) Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991) Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller–Segel model. Numer. Methods Partial Differ. Equ. 30, 1030–1065 (2014) Chertock, A., Epshteyn, Y., Hu, H., Kurganov, A.: High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems. Adv. Comput. Math. 44, 327–350 (2018) Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008) Childress, S., Percus, J.K.: Nolinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981) Chou, S., Kwak, D.Y., Li, Q.: \({L}^p\) error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ. 19, 463–486 (2003) Chou, S., Li, Q.: Error estimates in \({L}^2\), \({H}^1\) and \({L}^\infty \) in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69, 103–120 (1999) Crouzeix, M., Thomée, V.: Resolvent estimates in \(l^p\) for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes. Comput. Methods Appl. Meth. 1(1), 3–17 (2001) Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers Inc, Hauppauge, NY (2003) Epshteyn, Y.: Upwind-difference potentials method Patlak–Keller–Segel chemotaxis model. J. Sci. Comput. 53, 689–713 (2012) Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 40, 211–256 (2009) Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47, 386–408 (2008) Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods. Handbook of Numerical Analysis, vii, North-Holland, Amsterdam (2000) Fatkullin, I.: A study of blow-ups in the Keller–Segel model of chemotaxis. Nonlinearity 26, 81–94 (2013) Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104, 457–488 (2006) Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998) Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985) Haškovec, J., Schmeiser, C.: Stochastic p approximation for measure valued solutions of the 2D Keller–Segel system. J. Stat. Phys. 135, 133–151 (2009) Haškovec, J., Schmeiser, C.: Convergence of a stochastic p approximation for measure solutions of the 2D Keller–Segel system. Commun. Partial Differ. Equ. 36, 940–960 (2011) Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003) Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein. 106, 51–69 (2004) Keller, F.F., Segel, L.A.: Initiation on slime mold aggregation viewed as instability. J. Theor. Biol. 26, 399–415 (1970) Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, New York (2003) Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations, Numerical Analysis of Finite, vol. method. Marcel Dekker Inc, New York (2000) Marrocco, A.: 2D simulation of chemotaxis bacteria aggregation. M2AN 37, 617–630 (2003) Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Math. J. 20, 1077–1093 (1971) Nagai, T.: Global existence of solutions to a parabolic system for chemotaxis in two space dimensions. Nonlinear Anal. Theory Methods Appl. 30, 5381–5388 (1997) Nagai, T., Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic system of mathematical biology. Hiroshima Math. J. 30, 463–497 (2000) Okamoto, H.: On the semidiscrete finite element approximation for the nonstationary Navier–Stokes equation. J. Fac. Sci. Univ. Tokyo Sect. IA.Math. 29, 613–651 (1982) Perthame, B.: PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl. Math. 49, 539–364 (2004) Saito, N.: Remarks on the rational approximation of holomorphic semigroups with nonuniform partitions. Jpn. J. Ind. Appl. Math. 21, 323–337 (2004) Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007) Saito, N.: Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis. Commun. Pure Appl. Anal. 11, 339–364 (2012) Saito, N., Suzuki, T.: Notes on finite difference schemes to a parabolic–elliptic system modelling chemotaxis. Appl. Math. Comput. 171, 72–90 (2005) Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Meth. 10, 219–232 (2010) Suzuki, T.: Free Energy and Self-interacting Particles. Birkhauser, Boston (2005) Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006) Varga, R.S.: Matrix Iterative Analysis. Springer, Heidelberg (2000) Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimentional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010) Yagi, A.: Norm behaviour of solutions to a parabolic system of chemotaxis. Math. Jpn. 45, 241–256 (1997) Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numer. Math. 135, 265–311 (2017)