An Analysis of Adaptive Reactions in Healthy Subjects Who Have Persistent and Prolonged Contact with Tuberculosis Patients

Russian Journal of Bioorganic Chemistry - Tập 45 - Trang 173-178 - 2019
I. S. Litvinov1, D. A. Dolgich1
1Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Lasting contact of medical personnel in tuberculosis departments with the pathogen of Mycobacterium tuberculosis causes changes in their immune system, which is aimed at adapting the body to a constant antigenic load. Changes in the blood of medical staff indicate the participation of certain cells in the formation of protective immunity. Therefore, the observed changes are likely to be specific and reflect the formation of the protection of a healthy person’s organism from the development of tuberculosis. The question of the relevancy of the use of medical personnel blood parameters as a control over the health status of chronic tuberculosis patients is discussed. The most pronounced changes were observed in populations of monocytes and CD4+ T cells, which are directly involved in the protection of the human body against tuberculosis. The number of CD4+ T cells capable of producing interferon-gamma (IFN-γ) in response to stimulation by M. tuberculosis antigens was analyzed in the blood of medical personnel. The number of these cells in the blood of the medical staff varied depending on the duration of their work in clinic. Low level of CD4+ (IFN-γ)+ activated T cells in the blood of employees after 5–7 years of work can be a prognostic factor for low resistance to tuberculosis.

Tài liệu tham khảo

Ibrahim, M.K., Zambruni, M., Melby, C.L., and Melby, P.C., Clin. Microbiol. Rev., 2017, vol. 30, pp. 919–971. Cadena, A.M., Fortune, S.M., and Flynn, J.L., Nat. Rev. Immunol., 2017, vol. 17, pp. 691–702. van Crevel, R., Ottenhoff, T.H.M., and van der Meer, J.W.M., Clin. Microbiol. Rev., 2002, vol. 15, pp. 294–315. Flynn, J.L. and Chan, J., Ann. Rev. Immunol., 2001, vol. 19, pp. 93–135. Hadjadj, J., Dechartres, A., Chapron, T., Salah, S., Dunogue, B., Musset, L., Baudin, B., Groh, M., Blanche, P., Mouthon, L., Monnet, D., Le Jeunne, C., Brézin, A., and Terrier, B., Autoimmun. Rev., 2017, vol. 16, pp. 504–511. Boras, Z., Juretic, A., Rudolf, M., Uzarević, B., and Trescec, A., Croat. Med. J., 2002, vol. 43, pp. 301–318. Raja, A., Uma, DeviK.R., Ramalingam, B., and Brennan, P.J., Clin. Diagn. Lab. Immunol., 2002, vol. 9, pp. 308–321. Muller, I., Cobbold, S.P., Waldmann, H., and Kaufmann, S.H., Infect. Immun., 1987, vol. 55, pp. 2037–2036. Feng, C.G., Blanchard, T.J., Smith, G.L., Hill, A.V., and Britton, W.J., Immunol. Cell Biol., 2001, vol. 79, pp. 569–575. Boom, W.H., Canaday, D.H., Fulton, S.A., Gehring, A.J., Rojas, R.E., and Torres, M., Tuberculosis (Edinb.), 2003, vol. 83, pp. 98–111. Flynn, J.L., Chan, J., Triebold, K.J., Stewart, T.A., and Bloom, B.R., J. Exp. Med., 1993, vol. 178, pp. 2249–2256. Grotzke, J.E. and Lewinsohn, D.M., Microb. Infect., 2005, vol. 7, pp. 776–783. Lazarevic, V. and Flynn, J., Am. J. Respir. Crit. Care Med., 2002, vol. 166, pp. 1116–1121. Kaufmann, S.H., Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 2272–2277. Gumperz, J.E. and Brenner, M.B., Curr. Opin. Immunol., 2001, vol. 13, pp. 471–476. Ordway, D.J., Pinto, L., Costa, L., Martins, M., Leandro, C., Viveiros, M., Amaral, L., Arroz, M.J., Ventura, F.A., and Dockrell, H.M., Immunol. Med. Microbiol., 2005, vol. 43, pp. 339–350. Kaufmann, S.H., Tuberculosis (Edinb.), 2003, vol. 83, pp. 107–111. Burnet, F.M., The Clonal Selection Theory of Acquired Immunity, Cambridge: The University Press, 1959. Zhan, Y., Kelso, A., and Cheers, C., Infect. Immun., 1995, vol. 63, pp. 969–975.