Amorphous/Crystalline Heterostructured Cobalt‐Vanadium‐Iron (Oxy)hydroxides for Highly Efficient Oxygen Evolution Reaction

Advanced Energy Materials - Tập 10 Số 43 - 2020
Min Kuang1, Junming Zhang2, Daobin Liu1, Huiteng Tan1, Khang Ngoc Dinh1, Lan Yang1, Hao Ren1, Wenjing Huang1, Wei Fang1, Jiandong Yao1, Xiaodong Hao3, Jianwei Xu4, Chuntai Liu5, Li Song6, Bin Liu2, Qingyu Yan1
1School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
2School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
3Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China
4Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
5Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
6National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P R China

Tóm tắt

AbstractThe oxygen evolution reaction (OER) is a key process involved in energy and environment‐related technologies. An ideal OER electrocatalyst should show high exposure of active sites and optimal adsorption energies of oxygenated species. However, earth‐abundant transition‐metal‐based OER electrocatalysts still operate with sluggish OER kinetics. Here, a cation‐exchange route is reported to fabricate cobalt‐vanadium‐iron (oxy)hydroxide (CoV‐Fe0.28) nanosheets with tunable binding energies for the oxygenated intermediates. The formation of an amorphous/crystalline heterostructure in the CoV‐Fe0.28 catalyst boosts the exposure of active sites compared to their crystalline and amorphous counterparts. Furthermore, the synergetic interaction of Co, V, and Fe cations in the CoV‐Fe0.28 catalyst subtly regulates the local coordination environment and electronic structure, resulting in the optimal thermodynamic barrier for this elementary reaction step. As a result, the CoV‐Fe0.28 catalyst exhibits superior electrocatalytic activity toward the OER. A low overpotential of 215 mV is required to afford a current density of 10 mA cm−2 with a small Tafel slope of 39.1 mV dec−1, which outperforms commercial RuO2 (321 mV and 86.2 mV dec−1, respectively).

Từ khóa


Tài liệu tham khảo

10.1021/cr1002326

10.1039/C4CS00470A

10.1002/anie.201600687

10.1039/C4EE03869J

10.1039/C5NR06718A

10.1021/acsnano.9b06244

10.1016/j.cej.2020.125149

10.1039/c2ee03250c

10.1021/acs.chemrev.5b00073

10.1002/adma.201502696

10.1021/acscatal.5b01638

10.1002/adma.201602270

10.1002/aenm.201502585

10.1039/C8EE00611C

10.1002/aenm.201901312

10.1021/acscatal.8b01332

10.1007/s12274-017-1783-0

10.1002/adma.201803234

10.1021/ja509348t

10.1002/smll.201703514

10.1002/anie.201404208

10.1126/science.1233638

10.1002/ange.201804881

10.1021/acs.nanolett.8b04466

10.1038/s41467-018-05341-y

10.1021/acsenergylett.9b01252

10.1016/j.joule.2019.03.012

10.1002/anie.201811241

10.1002/adma.201905025

10.1021/ja407115p

10.1002/aenm.201803060

10.1002/anie.201611863

10.1039/C5EE03440J

10.1002/adma.201900528

10.1002/adma.201604437

10.1021/acsenergylett.8b00696

10.1002/adma.201906972

10.1038/s41929-018-0141-2

10.1039/C8EE00773J

10.1002/ange.201502836

10.1016/j.jelechem.2006.11.008

10.1073/pnas.1006652108