Sự cải thiện xơ vữa động mạch do lycopene liên quan đến việc điều chỉnh sự rối loạn vi khuẩn đường ruột và kích hoạt trục gut-heart ở chuột ApoE−/− ăn chế độ ăn nhiều chất béo
Tóm tắt
Sự tương tác giữa vi khuẩn đường ruột và tim, được gọi là “trục gut-heart”, đóng vai trò quan trọng trong diễn tiến của xơ vữa động mạch. Nghiên cứu trước đây của chúng tôi đã chỉ ra rằng lycopene có tác dụng giảm viêm và chống xơ vữa động mạch, nhưng mối liên hệ của nó với vi khuẩn đường ruột vẫn chưa được hiểu rõ. Tại đây, chúng tôi giả định rằng lycopene có thể điều chỉnh vi khuẩn đường ruột, phát huy tác dụng chống xơ vữa động mạch bằng cách điều chỉnh trục “gut-heart”.
Chuột đực ApoE−/− đã được cho ăn chế độ ăn nhiều chất béo (HFD) với hoặc không có lycopene (0.1% w/w) trong 19 tuần. Vi khuẩn đường ruột được phân tích bằng phương pháp giải trình tự 16 S rRNA, mức độ protein của zonula occludens-1 (ZO-1), occludin, thụ thể toll-like 4 (TLR4) và phospho-nuclear factor-κB (NF-κB) p65 được đo bằng phương pháp Western blot, các mức độ của các yếu tố viêm huyết thanh bao gồm monocyte chemotactic protein 1 (MCP-1), yếu tố hoại tử khối u-α (TNF-α), interleukin-1β (IL-1β), và IL-6 được kiểm tra bằng các bộ kit ELISA. Ngoài ra, nồng độ của lipopolysaccharide (LPS) huyết thanh, axit D-lactic (D-LA) và diamine peroxidase (DAO) cũng được đo thông qua phương pháp ELISA.
Các mẫu điển hình của xoang động mạch chủ cho thấy bổ sung lycopene đã giảm đáng kể mức độ tổn thương xơ vữa động mạch và ức chế sự phát triển của xơ vữa động mạch do HFD gây ra. Phân tích vi khuẩn đường ruột cho thấy lycopene làm giảm tỷ lệ Firmicutes/Bacteroides và tăng cường sự phong phú tương đối của Verrucomicrobia,
Kết quả của chúng tôi chỉ ra tác dụng bảo vệ của lycopene đối với xơ vữa động mạch do HFD gây ra và thêm vào đó, cơ chế của nó có thể là tác dụng prebiotic giúp duy trì sự cân bằng của vi khuẩn đường ruột và cải thiện chức năng hàng rào ruột, từ đó làm giảm phản ứng viêm do LPS huyết thanh kích hoạt ở tim.
Từ khóa
Tài liệu tham khảo
Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis Nat Rev Dis Primers. 2019;5(1):56.
Jonsson AL, Bäckhed F. Role of gut microbiota in Atherosclerosis. Nat Rev Cardiol. 2017;14(2):79–87.
Ma J, Li HT. Role of gut microbiota in Atherosclerosis and Hypertension. Front Pharmacol. 2018;9:1082.
Anto L, Blesso CN. Interplay between diet, the gut microbiome, and Atherosclerosis: role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism. J Nutr Biochem. 2022;105:108991.
Zhang L, Wang F, Wang J, Wang Y, Fang Y. Intestinal fatty acid-binding protein mediates atherosclerotic progress through increasing intestinal inflammation and permeability. J Cell Mol Med. 2020;24(9):5205–12.
Khan UM, Sevindik M, Zarrabi A, Nami M, Ozdemir B, Kaplan DN et al. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxid Med Cell Longev. 2021; 2021: 2713511.
Przybylska S, Tokarczyk G. Lycopene in the Prevention of Cardiovascular Diseases. Int J Mol Sci. 2022;23(4):1957.
Zou J, Feng D, Ling WH, Duan RD. Lycopene suppresses proinflammatory response in lipopolysaccharide-stimulated macrophages by inhibiting ROS-induced trafficking of TLR4 to lipid raft-like domains. J Nutr Biochem. 2013;24(6):1117–22.
Feng D, Ling WH, Duan RD. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-kappaB in macrophages. Inflamm Res. 2010;59(2):115–21.
Meng Q, Zhang Y, Li J, Shi B, Ma Q, Shan A. Lycopene affects intestinal barrier function and the gut microbiota in weaned piglets via antioxidant signaling regulation. J Nutr. 2022;152(11):2396–408.
Wang C, Qiu R, Cao Y, Ouyang WF, Li HB, Ling WH, et al. Higher dietary and serum carotenoid levels are associated with lower carotid intima-media thickness in middle-aged and elderly people. Br J Nutr. 2018;119(5):590–8.
Mannino F, Pallio G, Altavilla D, Squadrito F, Vermiglio G, Bitto A, et al. Atherosclerosis plaque reduction by Lycopene is mediated by increased energy expenditure through AMPK and PPARα in ApoE KO Mice Fed with a high Fat Diet. Biomolecules. 2022;12(7):973.
Feng D, Zhang H, Jiang X, Zou J, Li Q, Mai H, et al. Bisphenol a exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ Pollut. 2020;265(Pt A):114880.
Vujić N, Korbelius M, Sachdev V, Rainer S, Zimmer A, Huber A, et al. Intestine-specific DGAT1 deficiency improves Atherosclerosis in apolipoprotein E knockout mice by reducing systemic cholesterol burden. Atherosclerosis. 2020;310:26–36.
Fenni S, Hammou H, Astier J, Bonnet L, Karkeni E, Couturier C et al. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol Nutr Food Res. 2017; 61(9).
Mazidi M, Katsiki N, George ES, Banach M. Tomato and lycopene consumption is inversely associated with total and cause-specific mortality: a population-based cohort study, on behalf of the International Lipid Expert Panel (ILEP). Br J Nutr. 2020;124(12):1303–10.
Liu H, Liu J, Liu Z, Wang Q, Liu J, Feng D, et al. Lycopene Reduces Cholesterol Absorption and prevents Atherosclerosis in ApoE–/– mice by downregulating HNF-1α and NPC1L1 expression. J Agric Food Chem. 2021;69(35):10114–20.
Chiva-Blanch G, Jiménez C, Pinyol M, Herreras Z, Catalán M, Martínez-Huélamo M, et al. 5-cis-, Trans- and total lycopene plasma concentrations inversely relate to atherosclerotic plaque burden in newly diagnosed type 2 Diabetes subjects. Nutrients. 2020;12(6):1696.
Albrahim T, Alonazi MA. Lycopene corrects metabolic syndrome and liver injury induced by high fat diet in obese rats through antioxidant, anti-inflammatory, antifibrotic pathways. Biomed Pharmacother. 2021;141:111831.
Perveen R, Suleria HA, Anjum FM, Butt MS, Pasha I, Ahmad S. Tomato (Solanum lycopersicum) carotenoids and lycopenes Chemistry; metabolism, Absorption, Nutrition, and Allied Health Claims–A Comprehensive Review. Crit Rev Food Sci Nutr. 2015;55(7):919–29.
Trøseid M, Andersen G, Broch K, Hov JR. The gut microbiome in coronary artery Disease and Heart Failure: current knowledge and future directions. EBioMedicine. 2020;52:102649.
Zhu L, Zhang D, Zhu H, Zhu J, Weng S, Dong L, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced Atherosclerosis in Apoe(-/-) mice. Atherosclerosis. 2018;268:117–26.
Bian Y, Lei J, Zhong J, Wang B, Wan Y, Li J, et al. Kaempferol Reduces Obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat Diet mice: Kaempferol reduce inflammation and dysbacteria. J Nutr Biochem. 2022;99:108840.
Wiese M, Bashmakov Y, Chalyk N, Nielsen DS, Krych Ł, Kot W, et al. Prebiotic Effect of Lycopene and Dark Chocolate on Gut Microbiome with systemic changes in liver metabolism, skeletal muscles and skin in moderately obese persons. Biomed Res Int. 2019;2019:4625279.
Yan X, Zhai Y, Zhou W, Qiao Y, Guan L, Liu H, et al. Intestinal Flora mediates Antiobesity Effect of Rutin in High-Fat-Diet mice. Mol Nutr Food Res. 2022;66(14):e2100948.
Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia Muciniphila protects against Atherosclerosis by preventing Metabolic Endotoxemia-Induced inflammation in Apoe-/- mice. Circulation. 2016;133(24):2434–46.
Chen M, Hui S, Lang H, Zhou M, Zhang Y, Kang C, et al. SIRT3 Deficiency promotes high-Fat Diet-Induced nonalcoholic fatty Liver Disease in correlation with impaired intestinal permeability through Gut Microbial Dysbiosis. Mol Nutr Food Res. 2019;63(4):e1800612.
Schneeberger M, Everard A, Gómez-Valadés AG, Matamoros S, Ramírez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.
Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–103.
Cui H-X, Hu Y-N, Li J-W, Yuan K. Hypoglycemic Mechanism of the Berberine Organic Acid Salt under the Synergistic Effect of Intestinal Flora and Oxidative Stress. Oxid Med Cell Longev. 2018; 2018:8930374.
Liu J, Yue S, Yang Z, Feng W, Meng X, Wang A, et al. Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacol Res. 2018;134:40–50.
Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1–9.
Stevens BR, Goel R, Seungbum K, Richards EM, Holbert RC, Pepine CJ, et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut. 2018;67(8):1555–7.
Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic Disease. Curr Pharm Des. 2009;15(13):1546–58.
Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces Atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004;101(29):10679–84.
Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. 2002;105(10):1158–61.
Hennig B, Meerarani P, Ramadass P, Toborek M, Malecki A, Slim R, et al. Zinc nutrition and apoptosis of vascular endothelial cells: implications in Atherosclerosis. Nutrition. 1999;15(10):744–8.
Zernecke A, Weber C. Inflammatory mediators in atherosclerotic vascular Disease. Basic Res Cardiol. 2005;100(2):93–101.