Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response <i>to Mycobacterium tuberculosis</i> in vivo

Science immunology - Tập 4 Số 37 - 2019
Alissa C. Rothchild1, Gregory S. Olson1,2, Johannes Nemeth1, Lynn M. Amon1, Dat Mai1, Elizabeth S. Gold1, Alan H. Diercks1, Alan Aderem1
1Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
2Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA

Tóm tắt

Induction of an NRF2-dependent cell-protective signature impairs alveolar macrophages from controlling M.tb. infection in vivo.

Từ khóa


Tài liệu tham khảo

M. J. A. Reid, N. Arinaminpathy, A. Bloom, B. R. Bloom, C. Boehme, R. Chaisson, D. P. Chin, G. Churchyard, H. Cox, L. Ditiu, M. Dybul, J. Farrar, A. S. Fauci, E. Fekadu, P. I. Fujiwara, T. B. Hallett, C. L. Hanson, M. Harrington, N. Herbert, P. C. Hopewell, C. Ikeda, D. T. Jamison, A. J. Khan, I. Koek, N. Krishnan, A. Motsoaledi, M. Pai, M. C. Raviglione, A. Sharman, P. M. Small, S. Swaminathan, Z. Temesgen, A. Vassall, N. Venkatesan, K. van Weezenbeek, G. Yamey, B. D. Agins, S. Alexandru, J. R. Andrews, N. Beyeler, S. Bivol, G. Brigden, A. Cattamanchi, D. Cazabon, V. Crudu, A. Daftary, P. Dewan, L. K. Doepel, R. W. Eisinger, V. Fan, S. Fewer, J. Furin, J. D. Goldhaber-Fiebert, G. B. Gomez, S. M. Graham, D. Gupta, M. Kamene, S. Khaparde, E. W. Mailu, E. O. Masini, L. McHugh, E. Mitchell, S. Moon, M. Osberg, T. Pande, L. Prince, K. Rade, R. Rao, M. Remme, J. A. Seddon, C. Selwyn, P. Shete, K. S. Sachdeva, G. Stallworthy, J. F. Vesga, V. Vilc, E. P. Goosby, Building a tuberculosis-free world: The Lancet Commission on tuberculosis. Lancet 393, 1331–1384 (2019).

10.1016/j.chom.2018.08.001

K. B. Urdahl, Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin. Immunol. 26, 578–587 (2014).

10.1084/jem.20071367

10.4049/jimmunol.179.4.2509

10.1016/j.chom.2014.05.007

10.1073/pnas.0801496105

10.1038/nri3600

10.1126/science.8171324

10.1084/jem.20131199

10.1038/ni.2419

10.1016/j.cell.2014.11.018

10.1016/j.cell.2014.11.023

10.1038/ni.1637

10.1016/j.cell.2013.06.013

10.1084/jem.20172020

S. A. Stanley, J. E. Johndrow, P. Manzanillo, J. S. Cox, The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178, 3143–3152 (2007).

K. D. Mayer-Barber, D. L. Barber, K. Shenderov, S. D. White, M. S. Wilson, A. Cheever, D. Kugler, S. Hieny, P. Caspar, G. Nunez, D. Schlueter, R. A. Flavell, F. S. Sutterwala, A. Sher, Caspase-1 independent IL-1β production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 184, 3326–3330 (2010).

F. W. McNab, J. Ewbank, R. Rajsbaum, E. Stavropoulos, A. Martirosyan, P. S. Redford, X. Wu, C. M. Graham, M. Saraiva, P. Tsichlis, D. Chaussabel, S. C. Ley, A. O’Garra, TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. J. Immunol. 191, 1732–1743 (2013).

10.1016/j.chom.2015.05.004

A. C. Collins, H. Cai, T. Li, L. H. Franco, X.-D. Li, V. R. Nair, C. R. Scharn, C. E. Stamm, B. Levine, Z. J. Chen, M. U. Shiloh, Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17, 820–828 (2015).

J. Keane, M. K. Balcewicz-Sablinska, H. G. Remold, G. L. Chupp, B. B. Meek, M. J. Fenton, H. Kornfeld, Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect. Immun. 65, 298–304 (1997).

10.1146/annurev-immunol-032712-095939

A. G. D. Bean, D. R. Roach, H. Briscoe, M. P. France, H. Korner, J. D. Sedgwick, W. J. Britton, Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J. Immunol. 162, 3504–3511 (1999).

L. Desvignes, A. J. Wolf, J. D. Ernst, Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J. Immunol. 188, 6205–6215 (2012).

C. M. Fremond, D. Togbe, E. Doz, S. Rose, V. Vasseur, I. Maillet, M. Jacobs, B. Ryffel, V. F. J. Quesniaux, IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 179, 1178–1189 (2007).

10.1165/rcmb.2013-0086MA

10.1038/ni.3052

10.1038/nrd4002

10.1016/j.molcel.2010.05.004

S. Dhakshinamoorthy, A. K. Jain, D. A. Bloom, A. K. Jaiswal, Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants. J. Biol. Chem. 280, 16891–16900 (2005).

A. Otsuki, M. Suzuki, F. Katsuoka, K. Tsuchida, H. Suda, M. Morita, R. Shimizu, M. Yamamoto, Unique cistrome defined as CsMBE is strictly required for Nrf2-sMaf heterodimer function in cytoprotection. Free Radic. Biol. Med. 91, 45–57 (2016).

J. Braverman, K. M. Sogi, D. Benjamin, D. K. Nomura, S. A. Stanley, HIF-1α is an essential mediator of IFN-γ-dependent immunity to Mycobacterium tuberculosis. J. Immunol. 197, 1287–1297 (2016).

S. A. Stanley, S. Raghavan, W. W. Hwang, J. S. Cox, Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl. Acad. Sci. U.S.A. 100, 13001–13006 (2011).

10.1086/345862

D. G. Russell, The ins and outs of the Mycobacterium tuberculosis-containing vacuole. Cell. Microbiol. 18, 1065–1069 (2016).

10.1016/j.chom.2012.03.007

I. C. Koo, C. Wang, S. Raghavan, J. H. Morisaki, J. S. Cox, E. J. Brown, ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell. Microbiol. 10, 1866–1878 (2008).

B. B. Mishra, P. Moura-Alves, A. Sonawane, N. Hacohen, G. Griffiths, L. F. Moita, E. Anes, Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell. Microbiol. 12, 1046–1063 (2010).

10.1016/j.chom.2015.05.003

A. C. Rothchild, J. R. Sissons, S. Shafiani, C. Plaisier, D. Min, D. Mai, M. Gilchrist, J. Peschon, R. P. Larson, A. Bergthaler, N. S. Baliga, K. B. Urdahl, A. Aderem, MiR-155–regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 113, E6172–E6181 (2016).

10.1038/ncomms11624

10.1016/j.jim.2014.05.009

10.1073/pnas.93.24.13943

N. M. Reddy, H. R. Potteti, T. J. Mariani, S. Biswal, S. P. Reddy, Conditional deletion of Nrf2 in airway epithelium exacerbates acute lung injury and impairs the resolution of inflammation. Am. J. Respir. Cell Mol. Biol. 45, 1161–1168 (2011).

C. E. Stamm, A. C. Collins, M. U. Shiloh, Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol. Rev. 264, 204–219 (2015).

10.1128/IAI.70.8.4501-4509.2002

J. Day, A. Friedman, L. S. Schlesinger, Modeling the immune rheostat of macrophages in the lung in response to infection. Proc. Natl. Acad. Sci. U.S.A. 106, 11246–11251 (2009).

S. Marino, D. E. Kirschner, The human immune response to Mycobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 227, 463–486 (2004).

B. B. Andrade, N. Pavan Kumar, E. P. Amaral, N. Riteau, K. D. Mayer-Barber, K. W. Tosh, N. Maier, E. L. Conceicao, A. Kubler, R. Sridhar, V. V. Banurekha, M. S. Jawahar, T. Barbosa, V. C. Manganiello, J. Moss, J. R. Fontana, B. E. Marciano, E. P. Sampaio, K. N. Olivier, S. M. Holland, S. H. Jackson, M. Moayeri, S. Leppla, I. Sereti, D. L. Barber, T. B. Nutman, S. Babu, A. Sher, Heme oxygenase-1 regulation of matrix metalloproteinase-1 expression underlies distinct disease profiles in tuberculosis. J. Immunol. 195, 2763–2773 (2015).

K. C. Chinta, M. A. Rahman, V. Saini, J. N. Glasgow, V. P. Reddy, J. M. Lever, S. Nhamoyebonde, A. Leslie, R. M. Wells, A. Traylor, R. Madansein, G. P. Siegal, V. B. Antony, J. Deshane, G. Wells, K. Nargan, J. F. George, P. K. Ramdial, A. Agarwal, A. J. C. Steyn, Microanatomic distribution of myeloid heme oxygenase-1 protects against free radical-mediated immunopathology in human tuberculosis. Cell Rep. 25, 1938–1952.E5 (2018).

C. R. Scharn, A. C. Collins, V. R. Nair, C. E. Stamm, D. K. Marciano, E. A. Graviss, M. U. Shiloh, Heme oxygenase-1 regulates inflammation and mycobacterial survival in human macrophages during Mycobacterium tuberculosis infection. J. Immunol. 196, 4641–4649 (2016).

R. G. Jenner, R. A. Young, Insights into host responses against pathogens from transcriptional profiling. Nat. Rev. Microbiol. 3, 281–294 (2005).

J. B. Torrelles, L. S. Schlesinger, Integrating lung physiology, immunology, and tuberculosis. Trends Microbiol. 25, 688–697 (2017).

J. C. Gomez, H. Dang, J. R. Martin, C. M. Doerschuk, Nrf2 modulates host defense during Streptococcus pneumoniae pneumonia in mice. J. Immunol. 197, 2864–2879 (2016).

J. Athale, A. Ulrich, N. C. MacGarvey, R. R. Bartz, K. E. Welty-Wolf, H. B. Suliman, C. A. Piantadosi, Nrf2 promotes alveolar mitochondrial biogenesis and resolution of lung injury in Staphylococcus aureus pneumonia in mice. Free Radic. Biol. Med. 53, 1584–1594 (2012).

N. M. Reddy, S. R. Kleeberger, T. W. Kensler, M. Yamamoto, P. M. Hassoun, S. P. Reddy, Disruption of Nrf2 impairs the resolution of hyperoxia-induced acute lung injury and inflammation in mice. J. Immunol. 182, 7264–7271 (2009).

A. Page, V. A. Volchkova, S. P. Reid, M. Mateo, A. Bagnaud-Baule, K. Nemirov, A. C. Shurtleff, P. Lawrence, O. Reynard, M. Ottmann, V. Lotteau, S. S. Biswal, R. K. Thimmulappa, S. Bavari, V. E. Volchkov, Marburgvirus hijacks Nrf2-dependent pathway by targeting Nrf2-negative regulator Keap1. Cell Rep. 6, 1026–1036 (2014).

M. R. Edwards, B. Johnson, C. E. Mire, W. Xu, R. S. Shabman, L. N. Speller, D. W. Leung, T. W. Geisbert, G. K. Amarasinghe, C. F. Basler, The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep. 6, 1017–1025 (2014).

H.-Y. Cho, F. Imani, L. Miller-DeGraff, D. Walters, G. A. Melendi, M. Yamamoto, F. P. Polack, S. R. Kleeberger, Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease. Am. J. Respir. Crit. Care Med. 179, 138–150 (2009).

A. A. Lugade, R. R. Vethanayagam, M. Nasirikenari, P. N. Bogner, B. H. Segal, Y. Thanavala, Nrf2 regulates chronic lung inflammation and B-cell responses to nontypeable Haemophilus influenzae. Am. J. Respir. Cell Mol. Biol. 45, 557–565 (2011).

A. Boutten, D. Goven, E. Artaud-Macari, J. Boczkowski, M. Bonay, NRF2 targeting: A promising therapeutic strategy in chronic obstructive pulmonary disease. Trends Mol. Med. 17, 363–371 (2011).

10.1172/JCI200421146

10.1093/infdis/jir009

S. B. Gordon, N. G. Bruce, J. Grigg, P. L. Hibberd, O. P. Kurmi, K.-b. Lam, K. Mortimer, K. P. Asante, K. Balakrishnan, J. Balmes, N. Bar-Zeev, M. N. Bates, P. N. Breysse, S. Buist, Z. Chen, D. Havens, D. Jack, S. Jindal, H. Kan, S. Mehta, P. Moschovis, L. Naeher, A. Patel, R. Perez-Padilla, D. Pope, J. Rylance, S. Semple, W. J. Martin II, Respiratory risks from household air pollution in low and middle income countries. Lancet Respir. Med. 2, 823–860 (2014).

E. J. R. Peterson, R. Bailo, A. C. Rothchild, M. L. Arrieta-Ortiz, A. Kaur, M. Pan, D. Mai, A. A. Abidi, C. Cooper, A. Aderem, A. Bhatt, N. S. Baliga, Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation. Mol. Syst. Biol. 15, e8584 (2019).

10.1016/j.immuni.2014.10.015

10.1084/jem.20091885

W. G. Schroeder, L. M. Mitrescu, M. L. Hart, R. Unnithan, J. M. Gilchrist, E. E. Smith, C. Shanley, K. M. Benedict, L. Taraba, J. Volckens, R. J. Basaraba, A. R. Schenkel, Flexible low-cost system for small animal aerosol inhalation exposure to drugs, proteins, inflammatory agents, and infectious agents. Biotechniques 46, Piii–Pviii (2009).

10.1016/j.cels.2015.12.004

10.1073/pnas.0506580102