Aluminum nitride nanotubes

Chemical Papers - Tập 71 Số 5 - Trang 881-893 - 2017
Maziar Noei1, Hamed Soleymanabadi2, Ali Ahmadi Peyghan3
1Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
2Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
3Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmadi A, Beheshtian J, Hadipour NL (2011a) Interaction of NH3 with aluminum nitride nanotube: electrostatic vs. covalent. Phys E 43:1717–1719. doi: 10.1016/j.physe.2011.05.029

Ahmadi A, Kamfiroozi M, Beheshtian J, Hadipour NL (2011b) The effect of surface curvature of aluminum nitride nanotubes on the adsorption of NH3. Struct Chem 22(6):1261–1265. doi: 10.1007/s11224-011-9820-1

Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sens Actuators B Chem 161:1025–1029. doi: 10.1016/j.snb.2011.12.001

Almeida EF, de Brito Mota F, de Castilho CMC, Kakanakova-Georgieva A, Gueorguiev GK (2012) Defects in hexagonal-AlN sheets by first-principles calculations. Eur Phys J B 85(1):1–9. doi: 10.1140/epjb/e2011-20538-6

Altoe MVP, Sprunck JP, Gabriel J-CP, Bradley K (2003) Nanococoon seeds for BN nanotube growth. J Mater Sci 38(24):4805–4810. doi: 10.1023/b:jmsc.0000004399.94881.57

Baei MT, Peyghan AA, Moghimi M (2012a) Theoretical study of cyano radical adsorption on (6, 0) zigzag single-walled carbon nanotube. Mon Chem 143:1–8. doi: 10.1007/s00706-012-0739-z

Baei MT, Peyghan AA, Moghimi M, Hashemian S (2012b) First-principles calculations of structural stability, electronic, and electrical responses of GeC nanotube under electric field effect for use in nanoelectronic devices. Superlattices Microstruct 52(6):1119–1130. doi: 10.1016/j.spmi.2012.08.011

Baei MT, Peyghan AA, Bagheri Z (2012c) A computational study of AlN nanotube as an oxygen detector. Chin Chem Lett 23:965–968. doi: 10.1016/j.cclet.2012.06.027

Baei MT, Peyghan AA, Bagheri Z (2013) A density functional theory study on acetylene- functionalized BN nanotubes. Struct Chem 24(4):1007–1013. doi: 10.1007/s11224-012-0129-5

Bai L, Zhou Z (2007) Computational study of B-or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Carbon 45(10):2105–2110. doi: 10.1016/j.carbon.2007.05.019

Balasubramanian C, Bellucci S, Castrucci P, De Crescenzi M, Bhoraskar S (2004) Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes. Chem Phys Lett 383(1):188–191. doi: 10.1016/j.cplett.2003.11.028

Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167. doi: 10.1023/a:1014405811371

Beheshtian J, Peyghan AA (2013) Theoretical study on the functionalization of BC2N nanotube with amino groups. J Mol Model 19(6):2211–2216. doi: 10.1007/s00894-013-1759-2

Beheshtian J, Peyghan AA, Bagheri Z (2012a) Nitrate adsorption by carbon nanotubes in the vacuum and aqueous phase. Mon Chem 143:1623–1626. doi: 10.1007/s00706-012-0738-0

Beheshtian J, Peyghan AA, Bagheri Z (2012b) Quantum chemical study of fluorinated AlN nano-cage. Appl Surf Sci 259:631–636. doi: 10.1016/j.apsusc.2012.07.088

Beheshtian J, Peyghan AA, Bagheri Z, Kamfiroozi M (2012c) Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface. Struct Chem 23:1567–1572. doi: 10.1007/s11224-012-9970-9

Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012d) Co-adsorption of CO molecules at the open ends of MgO nanotubes. Struct Chem 23:1981–1986. doi: 10.1007/s11224-012-0021-3

Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012e) A theoretical study of CO adsorption on aluminum nitride nanotubes. Struct Chem 23:653–657. doi: 10.1007/s11224-011-9911-z

Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012f) Electronic sensor for sulfide dioxide based on AlN nanotubes: a computational study. J Mol Model 18(10):4745–4750. doi: 10.1007/s00894-012-1476-2

Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012g) AlN nanotube as a potential electronic sensor for nitrogen dioxide. Microelectron J 43(7):452–455. doi: 10.1016/j.mejo.2012.04.002

Beheshtian J, Peyghan AA, Bagheri Z (2012h) A first-principles study of H2S adsorption and dissociation on the AlN nanotube. Phys E 44(9):1963–1968. doi: 10.1016/j.physe.2012.06.003

Beheshtian J, Baei MT, Peyghan AA (2012i) Theoretical study of CO adsorption on the surface of BN, AlN, BP and AlP nanotubes. Surf Sci 606(11):981–985

Beheshtian J, Soleymanabadi H, Kamfiroozi M, Ahmadi A (2012j) The H2 dissociation on the BN, AlN, BP and AlP nanotubes: a comparative study. J Mol Model 18(6):2343–2348. doi: 10.1007/s00894-011-1256-4

Beheshtian J, Tabar MB, Bagheri Z, Peyghan AA (2013a) Exohedral and endohedral adsorption of alkaline earth cations in BN nanocluster. J Mol Model 19(3):1445–1450. doi: 10.1007/s00894-012-1702-y

Beheshtian J, Peyghan AA, Bagheri Z (2013b) Formaldehyde adsorption on the interior and exterior surfaces of CN nanotubes. Struct Chem 24(4):1331–1337. doi: 10.1007/s11224-012-0172-2

Beheshtian J, Peyghan AA, Noei M (2013c) Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sens Actuators B Chem 181:829–834. doi: 10.1016/j.snb.2013.02.086

Beheshtian J, Peyghan AA, Bagheri Z (2013d) Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J Mol Model 19(6):2197–2203. doi: 10.1007/s00894-012-1751-2

Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2013e) Nitrous oxide adsorption on pristine and Si-doped AlN nanotubes. J Mol Model 19(2):943–949. doi: 10.1007/s00894-012-1634-6

Bekyarova E, Davis M, Burch T, Itkis M, Zhao B, Sunshine S, Haddon R (2004) Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J Phys Chem B 108(51):19717–19720. doi: 10.1021/jp0471857

Bredas J-L (2014) Mind the gap! Mater Horiz 1(1):17–19. doi: 10.1039/c3mh00098b

Choi K, Arita M, Arakawa Y (2012) Selective-area growth of thin GaN nanowires by MOCVD. J Cryst Growth 357:58–61. doi: 10.1016/j.jcrysgro.2012.07.025

Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871. doi: 10.1063/1.1504867

Cui H-J, Shi J-W, Fu M-L (2012) Synthesis and catalytic activity of magnetic cryptomelane-type manganese oxide nanotubes. J Cluster Sci 23(3):607–614. doi: 10.1007/s10876-012-0478-7

da Silva LB (2014) Structural and dynamical properties of water confined in carbon nanotubes. J Nanostruct Chem 4(2):1–5. doi: 10.1007/s40097-014-0104-3

Fam D, Palaniappan A, Tok A, Liedberg B, Moochhala S (2011) A review on technological aspects influencing commercialization of carbon nanotube sensors. Sens Actuators B Chem 157(1):1–7. doi: 10.1016/j.snb.2011.03.040

Fang X, Bando Y, Gautam UK, Ye C, Golberg D (2008) Inorganic semiconductor nanostructures and their field-emission applications. J Mater Chem 18:509–522. doi: 10.1039/b712874f

Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H (1996) Nanotubes in boron nitride laser heated at high pressure. Appl Phys Lett 69(14):2045–2047. doi: 10.1063/1.116874

Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi H-J, Yang P (2003) Single-crystal gallium nitride nanotubes. Nature 422(6932):599–602. doi: 10.1038/nature01551

Goodarzi Z, Maghrebi M, Zavareh AF, Mokhtari-Hosseini Z-B, Ebrahimi-hoseinzadeh B, Zarmi AH, Barshan-tashnizi M (2015) Evaluation of nicotine sensor based on copper nanoparticles and carbon nanotubes. J Nanostruct Chem 5(3):237–242. doi: 10.1007/s40097-015-0154-1

Gutiérrez-Sosa A, Bangert U, Harvey A, Fall C, Jones R, Briddon P, Heggie M (2002) Band-gap-related energies of threading dislocations and quantum wells in group-III nitride films as derived from electron energy loss spectroscopy. Phys Rev B 66(3):035302. doi: 10.1103/physrevb.66.035302

Hacohen YR, Grunbaum E, Tenne R, Sloan J, Hutchison J (1998) Cage structures and nanotubes of NiCl2. Nature 395:336–337. doi: 10.1038/26380

Hadipour NL, Peyghan AA, Soleymanabadi H (2015) Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J Phys Chem C 119(11):6398–6404. doi: 10.1021/jp513019z

Hesabi M, Hesabi M (2013) The interaction between carbon nanotube and skin anti-cancer drugs: a DFT and NBO approach. J Nanostruct Chem 3(1):1–6. doi: 10.1186/2193-8865-3-22

Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi: 10.1038/354056a0

Jiao Y, Du A, Zhu Z, Rudolph V, Smith SC (2010) A density functional theory study of CO2 and N2 adsorption on aluminium nitride single walled nanotubes. J Mater Chem 20(46):10426–10430. doi: 10.1039/c0jm01416h

Kakanakova-Georgieva A, Persson POÅ, Yakimova R, Hultman L, Janzén E (2004) Sublimation epitaxy of AlN on SiC: growth morphology and structural features. J Cryst Growth 273:161–166. doi: 10.1016/j.jcrysgro.2004.07.093

Kakanakova-Georgieva A, Gueorguiev GK, Stafström S, Hultman L, Janzén E (2006) AlGaInN metal-organic-chemical-vapor-deposition gas-phase chemistry in hydrogen and nitrogen diluents: first-principles calculations. Chem Phys Lett 431:346–351. doi: 10.1016/j.cplett.2006.09.102

Kang JW, Hwang HJ (2004) Atomistic study of III-nitride nanotubes. Comput Mater Sci 31(3):237–246. doi: 10.1016/j.commatsci.2004.03.004

Kar P, Choudhury A (2013) Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sens Actuators B Chem 183:25–33. doi: 10.1016/j.snb.2013.03.093

Kim TK, Jeong E, Oh C, Shin M, Kim J, Jung O, Suh H, Khan F, Hyun M, Jin J (2011) Helical silica nanotubes: nanofabrication architecture, transfer of helix and chirality to silica nanotubes. Chem Pap 65:863–872. doi: 10.2478/s11696-011-0083-5

Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. doi: 10.1103/physrevb.54.11169

Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775. doi: 10.1103/physrevb.59.1758

Kumar D, Verma V, Dharamvir K, Bhatti H (2015) Elastic moduli of boron nitride, aluminium nitride and gallium nitride nanotubes using second generation reactive empirical bond order potential. Multidiscip Model Mater Struct 11(1):2–15. doi: 10.1108/mmms-01-2014-0006

Lee SM, Lee YH, Hwang YG, Elsner J, Porezag D, Frauenheim T (1999) Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys Rev B 60(11):7788–7793. doi: 10.1103/physrevb.60.7788

Lim SH, Lin J (2008) Ab initio study of the hydrogen chemisorption of single-walled aluminum nitride nanotubes. Chem Phys Lett 466(4–6):197–204. doi: 10.1016/j.cplett.2008.10.059

Liu Y, Gorla C, Liang S, Emanetoglu N, Lu Y, Shen H, Wraback M (2000) Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J Electron Mater 29:69–74. doi: 10.1007/s11664-000-0097-1

Machado M, Azevedo S (2011) Stability and electronic properties of AlN nanotubes under the influence of external electric field. Eur Phys J B 81(1):121–125. doi: 10.1140/epjb/e2011-10687-y

Mahdavifar Z, Abbasi N (2014) The influence of Cu-doping on aluminum nitride, silicon carbide and boron nitride nanotubes’ ability to detect carbon dioxide; DFT study. Phys E 56:268–276. doi: 10.1016/j.physe.2013.09.008

Mahdavifar Z, Haghbayan M (2012) Theoretical investigation of pristine and functionalized AlN and SiC single walled nanotubes as an adsorption candidate for methane. Appl Surf Sci 263:553–562. doi: 10.1016/j.apsusc.2012.09.106

Mahdavifar Z, Abbasi N, Shakerzadeh E (2013) A comparative theoretical study of CO2 sensing using inorganic AlN, BN and SiC single walled nanotubes. Sens Actuators B Chem 185:512–522. doi: 10.1016/j.snb.2013.05.004

Mahdavifar Z, Haghbyan M, Abbasi M (2014) Theoretical investigation of ethane and ethene monitoring using pristine and decorated aluminum nitride and silicon carbide nanotubes. Sens Actuators B Chem 196:555–566. doi: 10.1016/j.snb.2014.02.048

Moradi M, Peyghan AA (2014) Role of sodium decoration on the methane storage properties of BC3 nanosheet. Struct Chem 25(4):1083–1090. doi: 10.1007/s11224-013-0384-0

Moradi M, Noei M, Peyghan AA (2013) DFT studies of Si-and Al-doping effects on the acetone sensing properties of BC3 graphene. Mol Phys 111(21):3320–3326. doi: 10.1080/00268976.2013.783720

Nagarajan V, Chandiramouli R, Sriram S, Gopinath P (2014) Quantum chemical studies on the structural and electronic properties of nickel sulphide and iron sulphide nanoclusters. J Nanostruct Chem 4(1):1–16. doi: 10.1007/s40097-014-0087-0

Nemanich R, Benjamin M, Bozeman S, Bremser M, King S, Ward B, Davis R, Chen B, Zhang Z, Bernholc J (1995) (Negative) electron affinity of AlN and AlGaN alloys. MRS proceedings. Cambridge University Press, Cambridge, p 777. doi: 10.1557/proc-395-777

Nishizawa J, Kurabayashi T (1983) On the reaction mechanism of GaAs MOCVD. J Electrochem Soc 130(2):413–417. doi: 10.1149/1.2119722

Noei M, Ebrahimikia M, Saghapour Y, Khodaverdi M, Salari AA, Ahmadaghaei N (2015) Removal of ethyl acetylene toxic gas from environmental systems using AlN nanotube. J Nanostruct Chem 5(2):213–217. doi: 10.1007/s40097-015-0152-3

Oh D-H, Lee YH (1998) Stability and cap formation mechanism of single-walled carbon nanotubes. Phys Rev B 58(11):7407–7412. doi: 10.1103/physrevb.58.7407

Padovani F, Stratton R (1966) Field and thermionic-field emission in Schottky barriers. Solid State Electron 9(7):695–707. doi: 10.1016/0038-1101(66)90097-9

Parlayici S, Eskizeybek V, Avcı A, Pehlivan E (2015) Removal of chromium (VI) using activated carbon-supported-functionalized carbon nanotubes. J Nanostruct Chem 5(3):255–263. doi: 10.1007/s40097-015-0156-z

Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors. Nano Lett 3(4):513–517. doi: 10.1021/nl034064u

Pentaleri E, Gubanov V, Boekema C, Fong C (1997) First-principles band-structure calculations of p-and n-type substitutional impurities in zinc-blende aluminum nitride. Phys Status Solidi (b) 203(1):149–168. doi: 10.1002/1521-3951(199709)203:1<149:aid-pssb149>3.0.co;2-j

Perry P, Rutz R (1978) The optical absorption edge of single-crystal AlN prepared by a close- spaced vapor process. Appl Phys Lett 33(4):319–321. doi: 10.1063/1.90354

Peyghan AA, Bagheri Z (2012) Electronic response of BC3 nanotube to CS2 molecules: DFT studies. Comput Theor Chem 1008:1–7. doi: 10.1016/j.comptc.2012.12.014

Peyghan AA, Moradi M (2014a) DFT study of ozone dissociation on BC3 graphene with stone–wales defects. J Mol Model 20(1):1–7. doi: 10.1007/s00894-014-2071-5

Peyghan AA, Moradi M (2014b) Influence of antisite defect upon decomposition of nitrous oxide over graphene-analogue SiC. Thin Solid Films 552:111–115. doi: 10.1016/j.tsf.2013.12.050

Peyghan AA, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012a) Can aluminum nitride nanotubes detect the toxic NH3 molecules? Phys E 44:1357–1360. doi: 10.1016/j.physe.2012.02.018

Peyghan AA, Baei MT, Hashemian S, Moghimi M (2012b) Adsorption of nitrous oxide on the (6,0) magnesium oxide nanotube. Chin Chem Lett 23:1275–1278. doi: 10.1016/j.cclet.2012.09.008

Peyghan AA, Baei MT, Hashemian S, Torabi P (2013a) Adsorption of CO molecule on AlN nanotubes by parallel electric field. J Mol Model 19:859–870. doi: 10.1007/s00894-012-1614-x

Peyghan AA, Noei M, Tabar MB (2013b) A large gap opening of graphene induced by the adsorption of Co on the Al-doped site. J Mol Model 19:3007–3014. doi: 10.1007/s00894-013-1832-x

Peyghan AA, Baei MT, Torabi P, Hashemian S (2013c) Adsorption of thiophene on aluminum nitride nanotubes. Phosphorus Sulfur Silicon Relat Elem 188(9):1172–1177. doi: 10.1080/10426507.2012.737879

Peyghan AA, Rastegar SF, Hadipour NL (2014) DFT study of NH3 adsorption on pristine, Ni- and Si-doped graphynes. Phys Lett A 378:2184–2190. doi: 10.1016/j.physleta.2014.05.016

Rastegar SF, Peyghan AA, Hadipour NL (2012) Response of Si-and Al-doped graphenes toward HCN: a computational study. Appl Surf Sci 265:412–417

Rastegar SF, Peyghan AA, Soleymanabadi H (2015) Ab initio studies of the interaction of formaldehyde with beryllium oxide nanotube. Phys E 68:22–27. doi: 10.1016/j.physe.2014.12.005

Rezaei Sameti M, Samadi Jamil E (2016) The adsorption of CO molecule on pristine, As, B, BAs doped (4,4) armchair AlNNTs: a computational study. J Nanostruct Chem 6(3):197–205. doi: 10.1007/s40097-015-0183-9

Rideout V (1975) A review of the theory and technology for ohmic contacts to group III–V compound semiconductors. Solid State Electron 18(6):541–550. doi: 10.1016/0038-1101(75)90031-3

Robati D, Bagheriyan S, Rajabi M, Moradi O, Peyghan AA (2016) Effect of electrostatic interaction on the methylene blue and methyl orange adsorption by the pristine and functionalized carbon nanotubes. Phys E 83:1–6. doi: 10.1016/j.physe.2016.04.005

Saha M, Das S (2014) Fabrication of a nonenzymatic cholesterol biosensor using carbon nanotubes from coconut oil. J Nanostruct Chem 4(1):1–9. doi: 10.1007/s40097-014-0094-1

Samadizadeh M, Rastegar SF, Peyghan AA (2015) F−, Cl−, Li+ and Na+ adsorption on AlN nanotube surface: a DFT study. Phys E 69:75–80. doi: 10.1016/j.physe.2015.01.021

Santos RB, de Brito Mota F, Rivelino R, Kakanakova-Georgieva A, Gueorguiev GK (2016) Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties. Nanotechnology 27(14):145601. doi: 10.1088/0957-4484/27/14/145601

Shamsudin SM, Mohammad M, Zobir MSA, Asli AN, Bakar AS, Abdullah S, Yahya SSY, Mahmood RM (2013) Synthesis and nucleation-growth mechanism of almost catalyst-free carbon nanotubes grown from Fe-filled sphere-like graphene-shell surface. J Nanostruct Chem 3(1):1–12. doi: 10.1186/2193-8865-3-13

Shi S-C, Chen C-F, Chattopadhyay S, Chen K-H, Chen L-C (2005) Field emission from quasi-aligned aluminum nitride nanotips. Appl Phys Lett 87(7):073109. doi: 10.1063/1.2009838

Sreekala CSNOA, Indiramma J, Kumar KBSP, Sreelatha KS, Roy MS (2013) Functionalized multi-walled carbon nanotubes for enhanced photocurrent in dye-sensitized solar cells. J Nanostruct Chem 3(1):1–8. doi: 10.1186/2193-8865-3-19

Srivastava AK, Pandey SK, Misra N (2016) Structure, energetics, spectral and electronic properties of B3N3C54 heterofullerene. J Nanostruct Chem 6(2):103–109. doi: 10.1007/s40097-015-0184-8

Stan G, Ciobanu C, Thayer T, Wang G, Creighton J, Purushotham K, Bendersky L, Cook R (2008) Elastic moduli of faceted aluminum nitride nanotubes measured by contact resonance atomic force microscopy. Nanotechnology 20:035706–035711. doi: 10.1088/0957-4484/20/3/035706

Stejskal J, Trchová M, Brožová L, Prokeš J (2009) Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chem Pap 63:77–83. doi: 10.2478/s11696-008-0086-z

Sun Q, Wang Q, Jena P (2005) Storage of molecular hydrogen in BN cage: energetics and thermal stability. Nano Lett 5(7):1273–1277. doi: 10.1021/nl050385p

Taniyasu Y, Kasu M, Makimoto T (2004) Field emission properties of heavily Si-doped AlN in triode-type display structure. Appl Phys Lett 84(12):2115–2117. doi: 10.1063/1.1689398

Tenne, Zettl Ak (1996) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) CNTs: synthesis, structure, properties, and applications. Springer, New York, pp 81–111

Thapa R, Saha B, Das N, Maiti U, Chattopadhyay K (2010) Self filling of Ni nanoparticles in amorphous AlN nanotubes and its field emission property. Appl Surf Sci 256(12):3988–3992. doi: 10.1016/j.apsusc.2010.01.062

Tondare V, Balasubramanian C, Shende S, Joag D, Godbole V, Bhoraskar S, Bhadbhade M (2002) Field emission from open ended aluminum nitride nanotubes. Appl Phys Lett 80(25):4813–4815. doi: 10.1063/1.1482137

Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102(22):226401. doi: 10.1103/physrevlett.102.226401

Wang R, Zhang D, Sun W, Han Z, Liu C (2007) A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. J Mol Struct (Thoechem) 806(1–3):93–97. doi: 10.1016/j.theochem.2006.11.012

Wang Q, Sun Q, Jena P, Kawazoe Y (2009) Potential of AlN nanostructures as hydrogen storage materials. ACS Nano 3(3):621–626. doi: 10.1021/nn800815e

Wu J (2009) When group-III nitrides go infrared: new properties and perspectives. J Appl Phys 106(1):011101. doi: 10.1063/1.3155798

Wu Q, Hu Z, Wang X, Lu Y, Chen X, Xu H, Chen Y (2003) Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J Am Chem Soc 125(34):10176–10177. doi: 10.1021/ja0359963

Xiao H, Tahir-Kheli J, Goddard WA III (2011) Accurate band gaps for semiconductors from density functional theory. J Phys Chem Lett 2(3):212–217. doi: 10.1021/jz101565j

Xu X, Ren W, Xu H, Zhang X, Zheng X, Phillips DL, Zhao C (2015) O2 dissociation on the side wall of aluminum nitride nanotube: a DFT investigation. Sens Actuators B Chem 213:139–149. doi: 10.1016/j.snb.2015.02.032

Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B Chem 5(1–4):7–19. doi: 10.1016/0925-4005(91)80213-4

Yamazoe N, Kurokawa Y, Seiyama T (1983) Effects of additives on semiconductor gas sensors. Sens Actuators 4:283–289. doi: 10.1016/0250-6874(83)85034-3

Yang S, Olishevski P, Kertesz M (2004) Bandgap calculations for conjugated polymers. Synth Met 141(1):171–177. doi: 10.1016/j.synthmet.2003.08.019

Yim W, Stofko E, Zanzucchi P, Pankove J, Ettenberg M, Gilbert S (1973) Epitaxially grown AlN and its optical band gap. J Appl Phys 44(1):292–296. doi: 10.1063/1.1661876

Yin LW, Bando Y, Zhu YC, Li MS, Tang C-C, Golberg D (2005) Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv Mater 17(2):213–217. doi: 10.1002/adma.200400105

Yoon HJ, Yang JH, Zhou Z, Yang SS, Cheng MM-C (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B Chem 157(1):310–313. doi: 10.1016/j.snb.2011.03.035

Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. J Phys Chem A 111(8):1554–1561. doi: 10.1021/jp061633o

Zhang D, Zhang R (2003) Theoretical prediction on aluminum nitride nanotubes. Chem Phys Lett 371(3):426–432. doi: 10.1016/s0009-2614(03)00289-6

Zhang R, Costa J, Bertran E (1996) Role of structural saturation and geometry in the luminescence of silicon-based nanostructured materials. Phys Rev B 53(12):7847–7850. doi: 10.1103/physrevb.53.7847

Zhang Y, Zhang Y, Zhang D, Liu C (2006) Novel chemical sensor for cyanides: boron-doped carbon nanotubes. J Phys Chem B 110(10):4671–4674. doi: 10.1021/jp0602272

Zhao M, Xia Y, Zhang D, Mei L (2003) Stability and electronic structure of AlN nanotubes. Phys Rev B 68(23):235415–235420. doi: 10.1103/physrevb.68.235415

Zhen Z, Jijun Z, Yongsheng C, Paul von Ragué S, Zhongfang C (2007) Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors. Nanotechnology 18(42):424023–424030. doi: 10.1088/0957-4484/18/42/424023