Altering the Optical Properties of GaAsSb-Capped InAs Quantum Dots by Means of InAlAs Interlayers

Nanoscale Research Letters - Tập 14 - Trang 1-6 - 2019
A. Salhi1,2, S. Alshaibani2, Y. Alaskar2, H. Albrithen3, A. Albadri2, A. Alyamani2, M. Missous1
1School of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK
2National Center for Nanotechnology and Advanced Materials, KACST, Riyadh, Saudi Arabia
3Department of Physics and Astronomy, College of Sciences and Aramco Laboratory for Applied Sensors Research, KAIN, King Saud University, Riyadh, Saudi Arabia

Tóm tắt

In this work, we investigate the optical properties of InAs quantum dots (QDs) capped with composite In0.15Al0.85As/GaAs0.85Sb0.15 strain-reducing layers (SRLs) by means of high-resolution X-ray diffraction (HRXRD) and photoluminescence (PL) spectroscopy at 77 K. Thin In0.15Al0.85As layers with thickness t = 20 Å, 40 Å, and 60 Å were inserted between the QDs and a 60-Å-thick GaAs0.85Sb0.15 layer. The type II emissions observed for GaAs0.85Sb0.15-capped InAs QDs were suppressed by the insertion of the In0.15Al0.85As interlayer. Moreover, the emission wavelength was blueshifted for t = 20 Å and redshifted for t ≥ 40 Å resulting from the increased confinement potential and increased strain, respectively. The ground state and excited state energy separation is increased reaching 106 meV for t = 60 Å compared to 64 meV for the QDs capped with only GaAsSb SRL. In addition, the use of the In0.15Al0.85As layers narrows significantly the QD spectral linewidth from 52 to 35 meV for the samples with 40- and 60-Å-thick In0.15Al0.85As interlayers.

Tài liệu tham khảo

Gazzano O, Solomon GS (2016) Toward optical quantum information processing with quantum dots coupled to microstructures. JOSA B 33(7):C160–CC75. Keizer JG, Ulloa JM, Utrilla AD, Koenraad PM (2014) InAs quantum dot morphology after capping with In, N, Sb alloyed thin films. Appl Phys Lett 104(5):053116. Shimomura K, Kamiya I (2015) Strain engineering of quantum dots for long wavelength emission: photoluminescence from self-assembled InAs quantum dots grown on GaAs (001) at wavelengths over 1.55 μm. Appl Phys Lett 106(8):082103. Raino G, Visimberga G, Salhi A, Todaro MT, De Vittorio M, Passaseo A et al (2007) The influence of a continuum background on carrier relaxation in InAs/InGaAs quantum dot. Nanoscale Res Lett 2(10):509–511. Liu WS, Chu TF, Huang TH (2014) Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process. Opt Express 22(25):30963–30974. Cheng Y, Fukuda M, Whiteside V, Debnath M, Vallely P, Mishima T et al (2016) Investigation of InAs/GaAs1− xSbx quantum dots for applications in intermediate band solar cells. Sol Energ Mat Sol C. 147:94–100. Salhi A, Alshaibani S, Alaskar Y, Albrithen H, Albedri A, Alyamani A (2018) Strain-engineering of GaInAsSb overgrown layers and its effects on the optical properties of InAs/GaAs quantum dots. Opt Mater 79:200–205. Hospodková A, Zíková M, Pangrác J, Oswald J, Kubištová J, Kuldová K et al (2013) Type I–type II band alignment of a GaAsSb/InAs/GaAs quantum dot heterostructure influenced by dot size and strain-reducing layer composition. J Phys D Appl Phys 46(9):095103. Ulloa JM, Llorens JM, del Moral M, Bozkurt M, Koenraad PM, Hierro A (2012) Analysis of the modified optical properties and band structure of GaAs1-xSbx-capped InAs/GaAs quantum dots. J Appl Phys 112(7):074311. Salhi A, Alshaibani S, Alaskar Y, Albadri A, Alyamani A (2019) Achieving wavelength emission beyond the C-band from type-II InAs-GaAsSb quantum dots grown monolithically on silicon substrate. J Alloy Compd 771:382–386. Salhi A, Alshaibani S, Alhamdan M, Albrithen H, Alyamani A, El-Desouki M (2017) Effects of Sb incorporation in GaAsSb-capping layer on the optical properties of InAs/GaAs QDs grown by molecular beam epitaxy. Superlattice Microst 101:138–143. Hatch S, Wu J, Sablon K, Lam P, Tang MC, Jiang Q et al (2014) InAs/GaAsSb quantum dot solar cells. Opt Express 22(9):A679–AA85. Kim D, Hatch S, Wu J, Sablon KA, Lam P, Jurczak P et al (2018) Type-II InAs/GaAsSb quantum dot solar cells with GaAs interlayer. IEEE J Photovoltaics 8(3):741–745. Jia R, Jiang DS, Liu HY, Wei YQ, Xu B, Wang ZG (2002) Influence of combined InAlAs and InGaAs strain-reducing laser on luminescence properties of InAs/GaAs quantum dots. J Cryst Growth 234(2–3):354–358. Liu HY, Sellers IR, Hopkinson M, Harrison CN, Mowbray DJ, Skolnick MS (2003) Engineering carrier confinement potentials in 1.3- μm InAs/GaAs quantum dots with InAlAs layers: enhancement of the high-temperature photoluminescence intensity. Appl Phys Lett 83(18):3716–3718. Zhang Z, Xu B, Jin P, Meng X, Li CM, Ye X et al (2002) Photoluminescence study of self-assembled InAs/GaAs quantum dots covered by an InAlAs and InGaAs combination layer. J Appl Phys 92(1):511–514. He J, Wu Y, Wang KL (2010) Structure and composition profile of InAs/GaAs quantum dots capped by an InGaAs and InAlAs combination layer. Nanotechnology 21(25):255705. Liu WS, Chyi JI (2005) Optical properties of InAs quantum dots with InAlAs/InGaAs composite matrix. J Appl Phys 97(2):024312. Krijn M (1991) Heterojunction band offsets and effective masses in III-V quaternary alloys. Semicond Sci Tech 6(1):27. Vurgaftman I, Meyer J, Ram-Mohan L (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89(11):5815–5875. Bruker Optics. Infrared photoluminescence spectroscopy. In: Application Note # AN134. 2014. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/OpticalSpectrospcopy/FT-IR/VERTEX/AN/AN134_IR_Photoluminescence_EN.pdf. Jin CY, Liu HY, Zhang SY, Jiang Q, Liew SL, Hopkinson M et al (2007) Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer. Appl Phys Lett 91(2):021102 Salhi A, Alshaibani S, Alaskar Y, Albadri A, Alyamani A, Missous M (2018) Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers. Appl Phys Lett 113(10):103101. Ban K-Y, Kuciauskas D, Bremner SP, Honsberg CB (2012) Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence. J Appl Phys 111(10):104302. Gradkowski K, Ochalski TJ, Williams DP, Healy SB, Tatebayashi J, Balakrishnan G et al (2009) Coulomb effects in type-II Ga(As)Sb quantum dots. Phys. Status Solidi B Basic Solid State Phys. 246(4):752–755. Montes Bajo M, Ulloa JM, del Moral M, Guzman A, Hierro A (2011) Near infrared InAs/GaAsSb quantum dot light emitting diodes. Ieee J Quantum Elect 47(12):1547–1556. Chang KP, Yang SL, Chuu DS, Hsiao RS, Chen JF, Wei L et al (2005) Characterization of self-assembled InAs quantum dots with InAlAs/InGaAs strain-reduced layers by photoluminescence spectroscopy. J Appl Phys 97(8):083511. Utrilla AD, Grossi DF, Reyes DF, Gonzalo A, Braza V, Ben T et al (2018) Size and shape tunability of self-assembled InAs/GaAs nanostructures through the capping rate. Appl Surf Sci 444:260–266. Utrilla AD, Reyes DF, Llorens JM, Artacho I, Ben T, González D et al (2017) Thin GaAsSb capping layers for improved performance of InAs/GaAs quantum dot solar cells. Sol Energ Mat Sol C 159:282–289. Wang P, Chen Q, Wu X, Cao C, Wang S, Gong Q (2016) Detailed study of the influence of InGaAs matrix on the strain reduction in the InAs dot-in-well structure. Nanoscale Res Lett 11(1):119. Chiou R, Kuo DM (2008) Effects of composite InGaAs and InAlAs layers on the emission wavelengths of quantum dots. Chin J Phys 46(3):348–355. Jang Y, Lee H, Lee D, Kim J, Leem J, Noh S (2006) The energy level spacing from In As∕ Ga As quantum dots: Its relation to the emission wavelength, carrier lifetime, and zero dimensionality. J Appl Phys 99:096101. Liu HY, Hopkinson M (2003) Tuning the structural and optical properties of 1.3-μm InAs/GaAs quantum dots by a combined InAlAs and GaAs strained buffer layer. Appl Phys Lett 82(21):3644–3646. Ando Y, Itoh T (1987) Calculation of transmission tunneling current across arbitrary potential barriers. J Appl Phys 61(4):1497–1502.