Thay đổi biểu hiện microRNA trong bệnh xơ cứng cột bên theo cấp: vai trò trong việc điều chỉnh mức độ mRNA NFL

Danae Campos-Melo1, Cristian A. Droppelmann1, He Zhang1, Kathryn Volkening1, Michael J. Strong2
1Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, ON, Canada
2Department of Pathology, University of Western Ontario, London, ON, Canada

Tóm tắt

Tóm tắt Đặt vấn đề Bệnh Xơ Cứng Cột Bên (ALS) là một bệnh thoái hóa thần kinh tiến triển, khởi phát ở người lớn, gây tử vong liên quan đến các tế bào thần kinh vận động. Có bằng chứng mới nổi cho rằng sự thay đổi trong chuyển hóa RNA có thể rất quan trọng trong sinh bệnh học của ALS. MicroRNA (miRNA) là các RNA không mã hóa nhỏ đóng vai trò quan trọng trong độ ổn định của mRNA. Xem xét rằng miRNA ngày càng được công nhận có vai trò trong nhiều bệnh thoái hóa thần kinh, chúng tôi quyết định đặc trưng biểu hiện miRNA trong mô tủy sống (SC) ở bệnh nhân ALS không di truyền (sALS) và đối chứng. Hơn nữa, chúng tôi đã thực hiện phân tích chức năng để xác định một nhóm miRNA điều chỉnh sai có thể chịu trách nhiệm cho việc ức chế chọn lọc mRNA của sợi thần kinh có trọng lượng phân tử thấp (NFL) mà chúng tôi quan sát thấy ở bệnh nhân ALS. Kết quả Sử dụng các bầy thử nghiệm TaqMan, chúng tôi đã phân tích 664 miRNA và phát hiện rằng một số lượng lớn miRNA được biểu hiện khác nhau trong tủy sống thắt lưng phía trước ở sALS so với đối chứng. Chúng tôi quan sát thấy rằng hầu hết các miRNA điều chỉnh sai đều bị giảm trong mô tủy sống của bệnh nhân sALS. Phân tích Đường dẫn Ingenuity (IPA) cho thấy rằng các miRNA điều chỉnh sai có liên quan đến chức năng hệ thần kinh và cái chết tế bào. Chúng tôi đã sử dụng hai thuật toán dự đoán để phát triển một bảng miRNA có các yếu tố nhận diện trong 3′UTR của mRNA NFL ở người, sau đó chúng tôi đã thực hiện phân tích chức năng cho các miRNA này. Kết quả của chúng tôi cho thấy ba miRNA bị điều chỉnh sai trong sALS (miR-146a*, miR-524-5p và miR-582-3p) có khả năng tương tác với 3′UTR của mRNA NFL theo cách phù hợp với mức độ mRNA tĩnh đã bị ức chế mà chúng tôi quan sát thấy trong các tế bào vận động tủy sống ở ALS. Kết luận Biểu hiện miRNA bị thay đổi rộng rãi trong tủy sống ở sALS. Trong số đó có một nhóm miRNA điều chỉnh sai trực tiếp kiểm soát 3′UTR của mRNA NFL, gợi ý rằng chúng có vai trò trong việc ức chế chọn lọc mRNA NFL trong sự hình thành quần thể sợi thần kinh ở tế bào vận động tủy sống trong bệnh ALS.

Từ khóa


Tài liệu tham khảo

Rosen DR: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993, 364: 362-

Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, Patterson V, Swingler R, Kieran D, Prehn J: ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet. 2006, 38: 411-413. 10.1038/ng1742.

Wu D, Yu W, Kishikawa H, Folkerth RD, Iafrate AJ, Shen Y, Xin W, Sims K, Hu GF: Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol. 2007, 62: 609-617. 10.1002/ana.21221.

Pesiridis GS, Lee VM, Trojanowski JQ: Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet. 2009, 18: R156-R162. 10.1093/hmg/ddp303.

Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008, 40: 572-574. 10.1038/ng.132.

Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008, 319: 1668-1672. 10.1126/science.1154584.

Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009, 323: 1208-1211. 10.1126/science.1165942.

Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009, 323: 1205-1208. 10.1126/science.1166066.

DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011, 72: 245-256. 10.1016/j.neuron.2011.09.011.

Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011, 72: 257-268. 10.1016/j.neuron.2011.09.010.

Strong MJ: The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci. 2010, 288: 1-12. 10.1016/j.jns.2009.09.029.

Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ: Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 2009, 1305: 168-182.

Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville MJ, Percy ME: Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol. 1994, 53: 221-230. 10.1097/00005072-199405000-00002.

Menzies FM, Grierson AJ, Cookson MR, Heath PR, Tomkins J, Figlewicz DA, Ince PG, Shaw PJ: Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem. 2002, 82: 1118-1128.

Wong NK, He BP, Strong MJ: Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol. 2000, 59: 972-982.

Ge WW, Wen W, Strong W, Leystra-Lantz C, Strong MJ: Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem. 2005, 280: 118-124.

Strong MJ, Volkening K, Hammond R, Yang W, Strong W, Leystra-Lantz C, Shoesmith C: TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci. 2007, 35: 320-327. 10.1016/j.mcn.2007.03.007.

Droppelmann CA, Keller BA, Campos-Melo D, Volkening K, Strong MJ: Rho Guanine nucleotide exchange factor is a NFL mRNA destabilizing factor that forms cytoplasmic inclusions in amyotrophic lateral sclerosis. Neurobiol Aging. 2013, 34: 248-262. 10.1016/j.neurobiolaging.2012.06.021.

Moisse K, Volkening K, Leystra-Lantz C, Welch I, Hill T, Strong MJ: Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: implications for TDP-43 in the physiological response to neuronal injury. Brain Res. 2009, 1249: 202-211.

Wang IF, Wu LS, Chang HY, Shen CK: TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem. 2008, 105: 797-806. 10.1111/j.1471-4159.2007.05190.x.

Anderson P, Kedersha N: RNA granules. J Cell Biol. 2006, 172: 803-808. 10.1083/jcb.200512082.

Anderson P, Kedersha N: Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008, 33: 141-150. 10.1016/j.tibs.2007.12.003.

Du T, Zamore PD: microPrimer: the biogenesis and function of microRNA. Development. 2005, 132: 4645-4652. 10.1242/dev.02070.

Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW: MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 2007, 8: R173-10.1186/gb-2007-8-8-r173.

Cheng LC, Pastrana E, Tavazoie M, Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009, 12: 399-408. 10.1038/nn.2294.

Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X: Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 2010, 6: 433-444. 10.1016/j.stem.2010.02.017.

Tognini P, Putignano E, Coatti A, Pizzorusso T: Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci. 2011, 14: 1237-1239. 10.1038/nn.2920.

Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A: A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007, 317: 1220-1224. 10.1126/science.1140481.

Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT: Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol. 2011, 121: 193-205. 10.1007/s00401-010-0756-0.

Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK: Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 2011, 227: 172-179. 10.1016/j.expneurol.2010.10.012.

Boissonneault V, Plante I, Rivest S, Provost P: MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 2009, 284: 1971-1981.

Nelson PT, Wang WX, Rajeev BW: MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol. 2008, 18: 130-138. 10.1111/j.1750-3639.2007.00120.x.

Nelson PT, Keller JN: RNA in brain disease: no longer just “the messenger in the middle”. J Neuropathol Exp Neurol. 2007, 66: 461-468. 10.1097/01.jnen.0000240474.27791.f3.

Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA: A miRNA signature of prion induced neurodegeneration. PLoS One. 2008, 3: e3652-10.1371/journal.pone.0003652.

Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I: miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A. 2010, 107: 13111-13116. 10.1073/pnas.1006151107.

Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. PLoS Biol. 2005, 3: e85-10.1371/journal.pbio.0030085.

Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008, 28: 1213-1223. 10.1523/JNEUROSCI.5065-07.2008.

Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E: MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011, 20: 3067-3078. 10.1093/hmg/ddr210.

Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X: A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010, 38: 7219-7235. 10.1093/nar/gkq575.

Kocerha J, Kouri N, Baker M, Finch N, DeJesus-Hernandez M, Gonzalez J, Chidamparam K, Josephs KA, Boeve BF, Graff-Radford NR: Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations. BMC Genomics. 2011, 12: 527-10.1186/1471-2164-12-527.

Ge WW, Leystra-Lantz C, Wen W, Strong MJ: Selective loss of trans-acting instability determinants of neurofilament mRNA in amyotrophic lateral sclerosis spinal cord. J Biol Chem. 2003, 278: 26558-26563. 10.1074/jbc.M302886200.

Strong MJ, Leystra-Lantz C, Ge WW: Intermediate filament steady-state mRNA levels in amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2004, 316: 317-322. 10.1016/j.bbrc.2004.02.051.

Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B: MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res. 2008, 36: 6318-6332. 10.1093/nar/gkn624.

Ma F, Liu X, Li D, Wang P, Li N, Lu L, Cao X: MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol. 2010, 184: 6053-6059. 10.4049/jimmunol.0902308.

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27: 91-105. 10.1016/j.molcel.2007.06.017.

Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature. 2008, 455: 64-71. 10.1038/nature07242.

Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X: Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene. 2010, 29: 2302-2308. 10.1038/onc.2010.34.

Butz H, Liko I, Czirjak S, Igaz P, Korbonits M, Racz K, Patocs A: MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary. 2011, 14: 112-124. 10.1007/s11102-010-0268-x.

John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol. 2004, 2: e363-10.1371/journal.pbio.0020363.

Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31: 3406-3415. 10.1093/nar/gkg595.

Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 2004, 10: 1507-1517. 10.1261/rna.5248604.