Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Những biến đổi do Colomerus vitis gây ra trên các đặc điểm cấu trúc và sinh lý lá của hai giống nho
Experimental and Applied Acarology - Trang 1-19 - 2024
Tóm tắt
Vitis vinifera được trồng trên toàn thế giới vì giá trị dinh dưỡng và thương mại cao. Hơn 60 giống nho được trồng ở Chile. Hai trong số này, giống país và giống corinto, là những giống nho lâu đời nhất được biết đến và được sử dụng rộng rãi để chế biến đồ uống truyền thống cũng như tiêu thụ như nho thưởng thức. Hai giống nho này bị ảnh hưởng bởi Colomerus vitis, một loài nhện eriophyid, sinh sống trên lá của chúng và tạo thành erinea, nơi mà nhện và thế hệ sau của nó trú ẩn và lấy thức ăn. Mặc dù C. vitis có sự phân bố trên toàn cầu, nhưng ít nghiên cứu về tác động của nó đối với cấu trúc và sinh lý của cây bị ảnh hưởng đã được báo cáo. Nghiên cứu này nhằm mục đích đánh giá tác động của sự nhiễm C. vitis đối với hiệu suất lá cấu trúc và sinh lý của hai giống nho. Kết quả cho thấy hiện tượng tăng sản mô và tăng trưởng tế bào trong biểu bì, với sự sản xuất quá mức của lông tơ và sự nổi lên ở biểu bì mặt dưới của cả hai giống. Những thay đổi giải phẫu tương tự nhau giữa giống país và giống corinto, nhưng tỉ lệ lớn hơn ở giống país, nơi mà diện tích bị ảnh hưởng bởi erinea lớn hơn. Không phát hiện thay đổi đáng kể nào về hàm lượng sắc tố quang hợp; tuy nhiên, có sự gia tăng hàm lượng đường hòa tan tổng cộng trong lá erinea của giống país. Hàm lượng anthocyanin và phenol tổng thể cao hơn, cũng như sự hiện diện của pinocembrin trong giống corinto, giống này ít bị ảnh hưởng hơn bởi C. vitis, cũng có thể cho thấy một số khả năng kháng lại sự tấn công của nhện, điều này cần được nghiên cứu trong các nghiên cứu trong tương lai.
Từ khóa
#Vitis vinifera; Colomerus vitis; giống nho; nhiễm trùng; sinh lý thực vật; biểu bì; sắc tố quang hợpTài liệu tham khảo
Aguilera I, Alvear A (2021) Popular urban taste and mass culture: Chancho and terremoto in Chile. In: Ayora-Diaz SI (ed) Cultural politics of food, taste, and identity: a global perspective, firts edit. Bloomsbury Publishing, United Kingdom
Ali K, Maltese F, Choi YH, Verpoorte R (2010) Metabolic constituents of grapevine and grape-derived products. Phytochem Rev 9:357–378. https://doi.org/10.1007/s11101-009-9158-0
Aliquó G, Torres R, Lacombe T et al (2017) Identity and parentage of some south American grapevine cultivars present in Argentina. Aust J Grape Wine Res 23:452–460
Avgin S, Bahadiroğu G (2004) The effect of Colomerus vitis (Pgst.) (Acarina:Eriophyidae) on the yield and quality of grapes in Islahiye, Gaziantep. J Agric Sci 14:73–78
Baker BJR (1958) Note on the use of bromophenol blue for the histochemical recognition of protein. Q J Microsc Sci 99:459–460
Banerjee P, Islam M, Laha A et al (2020) Phytochemical analysis of mite-infested tea leaves of Darjeeling Hills. Phytochem Anal 31:277–286. https://doi.org/10.1002/pca.2893
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Chow PS, Landhäusser SM (2004) A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol 24:1129–1136
Cirkovic D, Matijaševic S, Deletic N et al (2019) The effect of early and late defoliation on phenolic composition and antioxidant properties of prokupac variety grape berries (Vitis vinifera L). Agronomy. https://doi.org/10.3390/agronomy9120822
Coueé I, Sulmon C, Gouesbet G, Amrani A, El (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459. https://doi.org/10.1093/jxb/erj027
Dickson RE (1979) Analytical procedures for the sequential extraction of 14 C-Labeled constituents from leaves, bark and wood of cottonwood plants. Physiol Plant 45:480–488
Ding H, Ali A, Cheng Z (2020) an allelopathic role for garlic root exudates in the regulation of carbohydrate metabolism in cucumber in a hydroponic co-culture system. Plants. https://doi.org/10.3390/plants9010045
Dorosh O, Moreira MM, Pinto D, Peixoto AF (2020) Evaluation of the extraction temperature influence on polyphenolic profiles of vine-canes (Vitis vinifera) subcritical water extracts. Foods 9:1–15
Fambrini M, Landi M, Pugliesi C (2021) Erinea in the ’Ansonica’ grapevine cultivar: trichome complement, histological effects and analysis of chlorophyll fluorescence in affected leaves Erinea in the ’Ansonica’ grapevine cultivar: trichome complement, histological effects and analysis. Vitis 60:101–108. https://doi.org/10.5073/vitis.2021.60.101-108
Ferreira BG, Teixeira CT, Isaias RMS (2014) Efficiency of the polyethylene-glycol (PEG) embedding medium for plant histochemistry. JHC 62:1–7. https://doi.org/10.1369/0022155414538265
Ferreira BG, Álvarez R, Avritzer SC, Isaias RMS (2017) Revisiting the histological patterns of storage tissues: beyond the limits of gall-inducing taxa. Botany 95:173–184
Ferreira BG, Álvarez R, Bragança GP et al (2019) Feeding and other gall gacets: patterns and determinants in gall structure. Bot Rev 85:78–106
Gabaston J, Richard T, Pinto AP (2017) Pinus pinaster knot: a source of polyphenols against Plasmopara Viticola. J Agric Food Chem 65:8884–8891. https://doi.org/10.1021/acs.jafc.7b04129
Garcia-Seco D, Zhang Y, Gutierrez-ma FJ et al (2015) Application of pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS ONE. https://doi.org/10.1371/journal.pone.0142639
Giampetruzzi A, Roumi V, Roberto R et al (2012) A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in Cv Pinot gris. Virus Res 163:262–268
Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005
Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr Protoc Food Anal Chem. https://doi.org/10.1002/0471142913.faf0102s00
Guedes LM, Torres S, Sáez-Carillo K et al (2022) High antioxidant activity of phenolic compounds dampens oxidative stress in Espinosa nothofagi galls induced on Nothofagus obliqua buds. Plant Sci. https://doi.org/10.1016/j.plantsci.2021.111114
Guedes L, Sanhueza C, Torres S et al (2023) Gall-inducing Eriophyes tiliae stimulates the metabolism of Tilia platyphyllos leaves towards oxidative protection. Plant Physiol Biochem 195:25–36. https://doi.org/10.1016/j.plaphy.2022.12.014
Halminton WD, Brown SP (2001) Autumn tree colours as a handicap signal. Proc R Soc Lond B 268:1489–1493.
Ibacache A, Zurita A, González C, Montoya MA (2015) Caracterización genética y agronómica de variedades pisqueras no tradicionales. La Serena
Irwin RE, Strauss SY, Storz S, Emerson A, Guibert G (2003) The role of hervibores in the maintenance of a flower color polymorphism in wild radish Ecology 8: 1733–1743
Isaias RMS, Oliveira DC, Carneiro RGS, Kraus JE (2014) Developmental anatomy of galls in the neotropics: arthropods stimuli versus host plant constraints. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer Science + Business Media Dordrecht, Dordrech, pp 15–34
Javadi Khederi S, Khanjani M, Bahman Asali F (2014a) Resistance of three grapevine cultivars to grape Erineum Mite, Colomerus vitis (Acari: Eriophyidae), in field conditions. Persian J Acarol 3:63–75
Javadi Khederi S, Lillo E, De, Khanjani M, Gholami M (2014b) Resistance of grapevine to the erineum strain of Colomerus vitis (Acari: Eriophyidae) in western Iran and its correlation with plant features. Exp Appl Acarol 63:15–35. https://doi.org/10.1007/s10493-014-9778-y
Javadi Khederi S, Khanjani M, Gholami M, de Lillo E (2018a) Sources of resistance to the erineum strain of Colomerus vitis (Acari: Eriophyidae) in grapevine cultivars. Syst Appl Acarol 23:405–425
Javadi Khederi S, Mohammad K, Mansur K (2018b) Impact of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on the development of plants of grapevine cultivars of Iran. Exp Appl Acarol 74:347–363. https://doi.org/10.1007/s10493-018-0245-z
Johansen DA (1940) Plant Microtechnique. Nature https://doi.org/10.1038/147222b0
Karageorgou PC, Buschmann Y, Manetas (2008) Red leaf color as a warning signal against insect herbivory: Honest or mimetic? Flora - Morphol Distrib Funct Ecol Plants 203(8):648–652. https://doi.org/10.1016/j.flora.2007.10.006
Karioti A, Tooulakou G, Rita A et al (2011) Erinea formation on Quercus ilex leaves: anatomical, physiological and chemical responses of leaf trichomes against mite attack. Phytochemistry 72:230–237. https://doi.org/10.1016/j.phytochem.2010.11.005
Kraus J, Arduin M (1997) Manual básico de métodos em morfologia vegetal, Brasil. EDUR, Rio de Janeiro
LaPlante ER, Fleming MB, Migicovsky Z, Weber MG (2021) Genome-wide association study reveals a genomic region associated with mite-recruitment phenotypes in the domesticated grapevine (Vitis vinifera). Genes (Basel) 12:1013
Lichtenthaler H, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592
Lillo E, De, Pozzebon A, Valenzano D et al (2018) An intimate relationship between eriophyoid mites and their host plants – a review. Front Plant Sci 9:1–14. https://doi.org/10.3389/fpls.2018.01786
Lima MRM, Felgueiras ML, Cunha A et al (2017) Differential phenolic production in leaves of Vitis vinifera Cv. Alvarinho affected with esca disease. Plant Physiol Biochem 112:45–52. https://doi.org/10.1016/j.plaphy.2016.12.020
Linder C, Jermini M, Zufferey V (2009) Nuisibilité De l’érinose sur le cépage Muscat. Rev Suisse Vitic Arboric Hortic 41:177–181
Malagnini V, De Lillo E, Saldarelli P et al (2016) Transmission of grapevine Pinot Gris virus by Colomerus vitis (Acari: Eriophyidae) to grapevine. Arch Virol 161:2595–2599
Mattivi F, Guzzon R, Vrhovsek U et al (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 54:7692–7702
Migicovsky Z, Sawler J, Gardner KM et al (2017) Patterns of genomic and phenomic diversity in wine and table grapes. Hortic Res 4:17035
Mongkolsilp S, Pongbupakit I, Sae-Lee N, Sitthihaworm W (2004) Radical scavenging activity and total phenolic content of medicinal plants used in primary health care. SWU J Pharm Sci 9(1):32–35
Napal GN, Palacios S (2015) Bioinsecticidal effect of the flavonoids pinocembrin and quercetin against Spodoptera frugiperda. J Pest Sci 88:629–635. https://doi.org/10.1007/s10340-014-0641-z
Napal GND, Carpinella MC, Palacios SM (2009) Bioresource technology antifeedant activity of ethanolic extract from Flourensia Oolepis and isolation of pinocembrin as its active principle compound. Bioresour Technol 100:3669–3673. https://doi.org/10.1016/j.biortech.2009.02.050
Neacsu M, Eklund PC, Sjöholm RE et al (2007) Antioxidant flavonoids from knotwood of Jack pine and European aspen. Eur J Wood Wood Prod 65:1–16
Nobrega LP, de Sá Haiad B, Ferreira BG (2023) Epidermal and subepidermal changes during the formation of hairy galls induced by Eriophyidae on Avicennia schaueriana leaves. Sci Nat 110:49. https://doi.org/10.1007/s00114-023-01876-3
Nobsathian S, Saiyaitong C, Koul O, Pluempanupat W (2021) The insecticidal potential of Piper ribesioides (Piperales: Piperaceae) extracts and isolated allelochemicals and their impact on the detoxification enzymes of Spodoptera exigua (Lepidoptera: Noctuidae). Phytoparasitica 49:659–673
OIV (2023) Organización Internacional de la Viña y el Vino. In: Base datos variedades vid. https://www.oiv.int/es/
Oliveira DC, Isaias RMS, Fernandes GW et al (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113. https://doi.org/10.1016/j.jinsphys.2015.11.012
Pefaur J (2020) Evolución De La Fruticultura chilena en Los últimos 20 años. Estudios Y políticas Agrarias-Odepa. Ministerio de Agricultura, Santiago, Chile
Peralta L (2002) Erinosis De La vid [en línea]. Informativo INIA Quilamapu, Chillan, p 61
Rasul A, Millimouno FM, Eltayb WA et al (2013) Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed Res Int. https://doi.org/10.1155/2013/379850
R Core Team (2021) R: A language and environment for statistical computing
Rose R, Rose CL, OmiS.K., et al (1991) Starch determination byperchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. J Agric Food Chem 39:2–11
Saccaggi DL, Maboeei P, Powell C et al (2022) Towards solving the Colomerus vitis conundrum: genetic evidence reveals a complex of highly diverged groups with little morphological differentiation. Diversity 15:342
Santos J, Escobar-avello D, Magalhães P et al (2022) High-value compounds obtained from grape canes (Vitis vinifera L.) by steam pressure alkali. Food Bioprod Process 133:153–167. https://doi.org/10.1016/j.fbp.2022.04.003
Sass J (1951) Botanical microtechnique, The Iowa S. Iowa
Soromou LW, Chu X, Jiang L et al (2014) In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int Immunopharmacol 14:66–74
Zamorano A, Medina G, Fernández C et al (2019) First report of Grapevine Pinot Gris Virus in grapevine in Chile. Plant Dis 103:4–7