Sự thay đổi về thời gian và/hoặc phương thức sinh có tác động khác nhau đến sự phát triển sớm ở chuột

Morgane Chiesa1, Diana C. Ferrari1, Yehezkel Ben-Ari1
1Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille, France

Tóm tắt

Sinh con là một quá trình sinh học phức tạp liên quan đến các kích thích hormonal và cơ học mà cùng nhau điều chỉnh sự sống sót và phát triển của thai nhi ra ngoài tử cung. Do đó, những thay đổi về thời gian hoặc cách sinh ra được liên kết với sự thay đổi của các chức năng sinh học cơ bản và được giả định là thúc đẩy sự xuất hiện của các rối loạn phát triển thần kinh. Do đó, sự gia tăng liên tục trong tỷ lệ sinh non và sinh mổ (CS) trong những năm qua đã trở thành mối quan tâm sức khỏe toàn cầu. Trong công trình trước đây của chúng tôi, chúng tôi đã báo cáo rằng mặc dù không quan sát thấy những khiếm khuyết giống tự kỷ lâu dài, nhưng chuột sinh non bằng phương pháp CS có những khiếm khuyết tạm thời về thần kinh và giao tiếp ở giai đoạn đầu. Tuy nhiên, sự đánh giá xem những thay đổi này là do sinh non kết hợp với sinh mổ, hay chỉ riêng sinh non cũng có thể dẫn đến kết quả tương tự vẫn cần được xem xét. Bằng cách sử dụng chuột sinh đúng thời hạn hoặc sinh non bằng sinh đường âm đạo hoặc sinh mổ, chúng tôi đã đánh giá các tiếng kêu siêu âm trong đời sống sớm và thời điểm mở mắt. Chúng tôi báo cáo rằng sự thay đổi trong hành vi giao tiếp được điều chỉnh một cách tinh tế và bị ảnh hưởng cụ thể bởi sinh non hoặc bởi sự kết hợp giữa sinh mổ và sinh non ở chuột, trong khi thời gian mở mắt bị chậm trễ là do sinh non. Hơn nữa, công trình của chúng tôi còn chỉ ra rằng có sự nhạy cảm tùy thuộc vào giới tính đối với những thay đổi về thời gian và/hoặc cách thức sinh với những kết quả khác nhau được quan sát ở nam và nữ. Do đó, kết quả của chúng tôi làm sáng tỏ sự phức tạp của những thay đổi trong quá trình sinh và có thể giải thích thêm về những sự khác biệt được báo cáo trong các nghiên cứu dịch tễ học.

Từ khóa

#sinh con #sinh non #sinh mổ #phát triển thần kinh #động vật thí nghiệm #giao tiếp #giới tính

Tài liệu tham khảo

Girard J. Metabolic adaptations to change of nutrition at birth. Biol Neonate. 1990;50:3–15. https://doi.org/10.1159/000243294.

Gunn T, Gluckman P. Perinatal thermogenesis. Early Hum Dev. 1995;42:169–83. https://doi.org/10.1016/0378-3782(95)01647-L.

Fujimura M, Seryu J. Velocity of head growth during the perinatal period. Arch Dis Child. 1977;52:105–12. https://doi.org/10.1136/adc.52.2.105.

Bergqvist L, Katz-Salamon M, Hertegård S, Anand K, Lagercrantz H. Mode of delivery modulates physiological and behavioral responses to neonatal pain. J Perinatol. 2009;29:44–50. https://doi.org/10.1038/jp.2008.129.

Toda T, Homma D, Tokuoka H, Hayakawa I, Sugimoto Y, Ichinose H, et al. Birth regulates the initiation of sensory map formation through serotonin signaling. Dev Cell. 2013;27:32–46. https://doi.org/10.1016/j.devcel.2013.09.002.

Toda T, Kawasaki H. The development of suckling behavior of neonatal mice is regulated by birth. Mol Brain. 2014;7:1–8. https://doi.org/10.1186/1756-6606-7-8.

Ben-ari Y. Is birth a critical period in the pathogenesis of autism spectrum disorders ? Nat Rev Neurosci. 2015;16:498–505. https://doi.org/10.1038/nrn3956.

World Health Organization. Preterm birth 2018. http://www.who.int/news-room/fact-sheets/detail/preterm-birth.

Villar J, Carroli G, Zavaleta N, Donner A, Wojdyla D, Faundes A, et al. Maternal and neonatal individual risks and benefits associated with caesarean delivery: multicentre prospective study. Br Med J. 2007;335:1025. https://doi.org/10.1136/bmj.39363.706956.55.

Fernandez E, Watterberg K. Relative adrenal insufficiency in the preterm and term infant. J Perinatol. 2009;29:S44–9. https://doi.org/10.1038/jp.2009.24.

Gessner I, Krovetz LJ, Benson RW, Prystowsky H, Stenger V, Eitzman DV. Hemodynamic adaptations in the newborn infant. Pediatrics. 1965;36:752–62.

Van Kempen A, Romijn J, Ruiter A, Endert E, Weverling G, Kok J, et al. Alanine administration does not stimulate gluconeogenesis in preterm infants. Metabolism. 2003;52:945–9. https://doi.org/10.1016/s0026-0495(03)00148-3.

Hägnevik K, Faxelius G, Irestedt L, Lagercrantz H, Lundell B, Persson B. Catecholamine surge and metabolic adaptation in the newborn after vaginal delivery and caesarean section. Acta Paediatr. 1984;73:602–9. https://doi.org/10.1111/j.1651-2227.1984.tb09982.x.

te Pas AB, Wong C, Kamlin CO, Dawson JA, Morley CJ, Davis PG. Breathing patterns in preterm and term infants immediately after birth. Pediatr Res. 2009;65:352–6. https://doi.org/10.1203/PDR.0b013e318193f117.

Vyas H, Milner A, Hopkin I. Intrathoracic pressure and volume changes during the spontaneous onset of respiration in babies born by cesarean section and by vaginal delivery. J Pediatr. 1981;99:787–91. https://doi.org/10.1016/S0022-3476(81)80412-X.

Mårild K, Stephansson O, Montgomery S, Murray J, Ludvigsson J. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology. 2012;142:39–45. https://doi.org/10.1053/j.gastro.2011.09.047.

Cardwell C, Stene L, Joner G, Cinek O, Svensson J, Goldacre M, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51:726–35. https://doi.org/10.1007/s00125-008-0941-z.

Huh S, Rifas-shiman S, Zera C, Rich Edwards J, Oken E, Weiss S, et al. Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort ctudy. Arch Dis Child. 2013;97:610–6. https://doi.org/10.1136/archdischild-2011-301141.

Movsas T, Paneth N. The effect of gestational age on symptom severity in children with autism spectrum disorder. J Autism Dev Disord. 2012;42:2431–9. https://doi.org/10.1007/s10803-012-1501-4.

Yip BHK, Leonard H, Stock S, Stoltenberg C, Francis RW, Gissler M, et al. Caesarean section and risk of autism across gestational age: a multi-national cohort study of 5 million births. Int J Epidemiol. 2017;46:429–39. https://doi.org/10.1093/ije/dyw336.

Beck S, Wojdyla D, Say L, Betran A, Merialdi M, Requejo J, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88:31–8. https://doi.org/10.2471/BLT.08.062554.

Betrán A, Ye J, Moller A, Zhang J, Gülmezoglu A, Torloni M. The increasing trend in caesarean section rates: global, regional and National Estimates: 1990-2014. PLoS One. 2016;11:1–12. https://doi.org/10.1371/journal.pone.0148343.

Bilder D, Pinborough-Zimmerman J, Miller J, McMahon W. Prenatal, perinatal, and neonatal factors associated with autism spectrum disorders. Pediatrics. 2009;123:1293–300. https://doi.org/10.1542/peds.2008-0927.

Zhang X, Lv C, Tian J, Miao R, Xi W, Hertz-Picciotto I, et al. Prenatal and perinatal risk factors for autism in China. J Autism Dev Disord. 2010;40:1311–21. https://doi.org/10.1007/s10803-010-0992-0.

Chiesa M, Guimond D, Tyzio R, Pons-Bennaceur A, Lozovaya N, Burnashev N, et al. Term or preterm cesarean section delivery does not lead to long-term detrimental consequences in mice. Cereb Cortex. 2019;29:2424–36. https://doi.org/10.1093/cercor/bhy112.

Scattoni M, Crawley J, Ricceri L. Ultrasonic vocalizations: a tool for behavioral phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav Rev. 2009;33:508–15. https://doi.org/10.1016/j.neubiorev.2008.08.003.

Leung MPS, Thompson B, Black J, Dai S, Alsweiler JM. The effects of preterm birth on visual development. Clin Exp Optom. 2018;101:4–12. https://doi.org/10.1111/cxo.12578.

Scharf RJ, Scharf GJ, Stroustrup A. Developmental milestones. Pediatr Rev. 2016;37:25–37. https://doi.org/10.1542/pir.2014-0103.

Fueta Y, Sekino Y, Yoshida S, Kanda Y, Ueno S. Prenatal exposure to valproic acid alters the development of excitability in the postnatal rat hippocampus. Neurotoxicology. 2018;65:1–8. https://doi.org/10.1016/j.neuro.2018.01.001.

Rüedi-Bettschen D, Platt DM. Detrimental effects of self-administered methamphetamine during pregnancy on offspring development in the rat. Drug Alcohol Depend. 2017;177:171–7. https://doi.org/10.1016/j.drugalcdep.2017.03.042.

Burkuš J, Marová MKAČ, Kubandová J, Kokošová N, Fabianová K, Fabian D, et al. Stress exposure during the preimplantation period affects blastocyst lineages and offspring development. J Reprod Dev. 2015;61:325–31. https://doi.org/10.1262/jrd.2015-012.

Giriko CÁ, Andreoli CA, Mennitti LV, Hosoume LF, Souto TDS, Da Silva AV, et al. Delayed physical and neurobehavioral development and increased aggressive and depression-like behaviors in the rat offspring of dams fed a high-fat diet. Int J Dev Neurosci. 2013;31:731–9. https://doi.org/10.1016/j.ijdevneu.2013.09.001.

El-Khodor B, Boksa P. Long-term reciprocal changes in dopamine levels in prefrontal cortex versus nucleus accumbens in rats born by caesarean section compared to vaginal birth. Exp Neurol. 1997;145:118–29. https://doi.org/10.1006/exnr.1997.6437.

Dudley DJ, Branch DW, Edwin SS, Mitchell MD. Induction of preterm birth in mice by RU486. Biol Reprod. 1996;55:992–5. https://doi.org/10.1095/biolreprod55.5.992.

Teraishi T, Yoshioka M. Electron-microscopic and immunohistochemical studies of eyelid reopening in the mouse. Anat Embryol (Berl). 2001;204:101–7. https://doi.org/10.1007/s004290100189.

Toonen J, Liang L, Sidjanin DJ. Waved with open eyelids 2 (woe2) is a novel spontaneous mouse mutation in the protein phosphatase 1, regulatory (inhibitor) subunit 13 like (Ppp1r13l) gene. BMC Genet. 2012;13:76. https://doi.org/10.1186/1471-2156-13-76.

Cang J, Renteria R, Kaneko M, Liu X, Copenhagen D, Stryker M. Development of previse maps in visual cortex requires patterned spontaneous activity in the retina. Neuron. 2005;48:797–809. https://doi.org/10.1016/j.neuron.2005.09.015.

Huberman A, Feller M, Chapman B. Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci. 2008;31:479–509. https://doi.org/10.1146/annurev.neuro.31.060407.125533.

Garaschuk O, Linn J, EIlers J, Konnerth A. Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci. 2000;3:452–9. https://doi.org/10.1038/74823.

Allene C, Cattani A, Ackman JB, Bonifazi P, Aniksztejn L, Ben-Ari Y, et al. Sequential generation of two distinct synapse-driven network patterns in developing Neocortex. J Neurosci. 2008;28:12851–63. https://doi.org/10.1523/JNEUROSCI.3733-08.2008.

Rochefort N, Garaschuk O, Milos R, Narushima M, Marandi N, Pichler B, et al. Sparsification of neuronal activity in the visual cortex at eye-opening. Proc Natl Acad Sci U S A. 2009;106:15049–54. https://doi.org/10.1073/pnas.0907660106.

Fischer J, Hammerschmidt K. Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication. Genes Brain Behav. 2011;10:17–27. https://doi.org/10.1111/j.1601-183X.2010.00610.x.

Nomoto K, Ikumi M, Otsuka M, Asaba A, Kato M, Koshida N, et al. Female mice exhibit both sexual and social partner preferences for vocalizing males. Integr Zool. 2018;13:735–44. https://doi.org/10.1111/1749-4877.12357.

Matsumoto YK, Okanoya K. Mice modulate ultrasonic calling bouts according to sociosexual context. R Soc Open Sci. 2018;5:180378. https://doi.org/10.1098/rsos.180378.

Holtzman D, Santucci D, Kilbridge J, Chua-Couzens J, Fontana D, Daniels S, et al. Developmental abnormalities and age-related neurodegeneration in a mouse model of down syndrome. Proc Natl Acad Sci U S A. 1996;93:13333–8. https://doi.org/10.1073/pnas.93.23.13333.

Hodges S, Nolan S, Reynolds C, Lugo J. Spectral and temporal properties of calls reveal deficits in ultrasonic vocalizations of adult Fmr1 knockout mice. Behav Brain Res. 2017;332:50–8. https://doi.org/10.1016/j.bbr.2017.05.052.

Jaramillo T, Speed H, Xuan Z, Reimers J, Shunan L, Powell C. Altered striatal synaptic function and abnormal behaviour in Shank3 exon 4-9 deletion mouse model of autism. Autism Res. 2016;9:350–75. https://doi.org/10.1002/aur.1529.

Winkler D, Daher F, Wüstefeld L, Hammerschmidt K, Poggi G, Seelbach A, et al. Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93. Behav Brain Res. 2018;352:35–45. https://doi.org/10.1016/j.bbr.2017.02.011.

Scattoni ML, Gandhy SU, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PLoS One. 2008;3:e3067. https://doi.org/10.1371/journal.pone.0003067.

Tesdahl NS, King DK, McDaniel LN, Pieper AA. Altered ultrasonic vocalization in neonatal SAPAP3-deficient mice. Neuroreport. 2017;28:1115–8. https://doi.org/10.1097/WNR.0000000000000863.

Fröhlich H, Rafiullah R, Schmitt N, Abele S, Rappold GA. Foxp1 expression is essential for sex-specific murine neonatal ultrasonic vocalization. Hum Mol Genet. 2017;26:1511–21. https://doi.org/10.1093/hmg/ddx055.

Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder A, et al. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci U S A. 2005;102:9643–8. https://doi.org/10.1073/pnas.0503739102.

Sutton D, Larson C, Lindeman RC. Neocortical and limbic lesion effects on primate phonation. Brain Res. 1974;71:61–75. https://doi.org/10.1016/0006-8993(74)90191-7.

Jürgens U. The neural control of vocalization in mammals: a review. J Voice. 2009;23:1–10. https://doi.org/10.1016/j.jvoice.2007.07.005.

Donovan A, Basson MA. The neuroanatomy of autism - a developmental perspective. J Anat. 2017;230:4–15. https://doi.org/10.1111/joa.12542.

Karlsgodt K, Sun D, Cannon T. Structural and functional brain abnormalities in schizophrenia. Curr Dir Psychol Sci. 2010;19:226–31. https://doi.org/10.1177/0963721410377601.

Zhang T, Sidorchuk A, Sevilla-Cermeño L, Vilaplana-Pérez A, Chang Z, Larsson H, et al. Association of cesarean delivery with risk of neurodevelopmental and psychiatric disorders in the offspring. JAMA Netw Open. 2019;2:e1910236. https://doi.org/10.1001/jamanetworkopen.2019.10236.

Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari E, et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science. 2014;343:675–9. https://doi.org/10.1126/science.1247190.

Mazzuca M, Minlebaev M, Shakirzyanova A, Tyzio R, Taccola G, Janackova S, et al. Newborn analgesia mediated by oxytocin during delivery. Front Cell Neurosci. 2011;5:3. https://doi.org/10.3389/fncel.2011.00003.

Battarbee AN, Glover AV, Vladutiu CJ, Gyamfi-Bannerman C, Aliaga S, Manuck TA, et al. Sex-specific differences in late preterm neonatal outcomes. Am J Perinatol. 2019;36:1223–8. https://doi.org/10.1055/s-0039-1683886.

Jiang M, Mishu MM, Lu D, Yin X. A case control study of risk factors and neonatal outcomes of preterm birth. Taiwan J Obstet Gynecol. 2018;57:814–8. https://doi.org/10.1016/j.tjog.2018.10.008.

Vogel JP, Chawanpaiboon S, Moller A-B, Watananirun K, Bonet M, Lumbiganon P. The global epidemiology of preterm birth. Best Pract Res Clin Obstet Gynaecol. 2018;52:3–12. https://doi.org/10.1016/j.bpobgyn.2018.04.003.

Loomes R, Hull L, Mandy WPL. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017;56:466–74. https://doi.org/10.1016/j.jaac.2017.03.013.

McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D. A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med. 2004;2:13. https://doi.org/10.1186/1741-7015-2-13.

Aleman A, Kahn RS, Selten J-P. Sex differences in the risk of schizophrenia. Arch Gen Psychiatry. 2003;60:565–71. https://doi.org/10.1111/j.1464-0597.1985.tb01327.x.

Ramtekkar UP, Reiersen AM, Todorov AA, Todd RD. Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: implications for DSM-V and ICD-11. J Am Acad Child Adolesc Psychiatry. 2010;49:217–218.e1–3. https://doi.org/10.1038/jid.2014.371.

Braun AE, Carpentier PA, Babineau BA, Narayan AR, Kielhold ML, Moon HM, et al. “Females are not just ‘protected’ males”: sex-specific vulnerabilities in placenta and brain after prenatal immune disruption. ENeuro. 2019;6(6). https://doi.org/10.1523/ENEURO.0358-19.2019.

Sandman CA, Glynn LM, Poggi Davis E. Is there a viability-vulnerability tradeoff? Differences in fetal programming. J Psychosom Res. 2013;75:327–35. https://doi.org/10.1016/j.jpsychores.2013.07.009.IS.

Chang HM, Pan CH, Chen PH, Chen YL, Tai MH, Su SS, et al. Sex differences in incidence and psychiatric comorbidity for alcohol dependence in patients with panic disorder. Drug Alcohol Depend. 2020;207:107814. https://doi.org/10.1016/j.drugalcdep.2019.107814.