Alphavirus vectors and vaccination

Reviews in Medical Virology - Tập 12 Số 5 - Trang 279-296 - 2002
Jonathan O. Rayner1, Sergey A. Dryga1, Kurt I. Kamrud1
1AlphaVax, Inc., P.O. Box 110307, Research Triangle Park, NC 27709‐0307, USA

Tóm tắt

Abstract

Alphaviruses are positive‐stranded RNA viruses that have a broad host range and therefore are capable of replicating in many vertebrate and invertebrate cells. The single‐stranded alphavirus genome is divided into two ORFs. The first ORF encodes the nonstructural proteins that are translated upon entry of the virus into the cytoplasm and are responsible for transcription and replication of viral RNA. The second ORF is under the control of a subgenomic promoter and normally encodes the structural proteins, which are responsible for encapsidation of viral RNA and final assembly into enveloped particles. Expression vectors have been engineered from at least three alphaviruses in which the structural protein gene region has been replaced by heterologous genes and have been shown to express high levels of the heterologous protein in cultured cells. These RNA vectors, known as replicons, are capable of replicating on their own but are not packaged into virus‐like particles unless the structural proteins are provided in trans. Thus, replicons are single cycle vectors incapable of spreading from infected to noninfected cells. Because of these features, alphavirus replicon vectors are being developed as a platform vaccine technology for numerous viral, bacterial, protozoan and tumour antigens where they have been shown to be efficient inducers of both humoral and T cell responses. In addition, as the alphavirus structural proteins are not expressed in vaccine recipients, antivector immune responses are generally minimal, allowing for multiple effective immunisations of the same individual. Copyright © 2002 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1056/NEJMra011223

Plotkin SAO, 1999, Vaccines

10.1002/(SICI)1099-1654(200005/06)10:3<185::AID-RMV285>3.0.CO;2-8

Schlesinger S, 2001, Fields Virology, 895

10.1128/JVI.75.21.10118-10131.2001

10.1128/jvi.61.12.3809-3819.1987

McKnight KL, 1996, Deduced consensus sequence of Sindbis virus strain AR339: mutations contained in laboratory strains which affect cell culture and in vivo phenotypes, J Virol, 70, 1981, 10.1128/jvi.70.3.1981-1989.1996

Liljestrom P, 1991, In vitro mutagenesis of a full‐length cDNA clone of Semliki Forest virus: the small 6000‐molecular‐weight membrane protein modulates virus release, J Virol, 65, 4107, 10.1128/jvi.65.8.4107-4113.1991

10.1016/0042-6822(89)90526-6

10.1128/jvi.67.3.1269-1277.1993

Frolov IV, 1993, Recombinant equine Venezuelan encephalomyelitis virus, expressing HBsAg, Dokl Akad Nauk, 332, 789

10.1016/0042-6822(91)90584-X

Shirako Y, 2000, Genome structure of Sagiyama virus and its relatedness to other alphaviruses, J Gen Virol, 81, 1353

10.1006/viro.1996.0445

10.1128/mr.58.3.491-562.1994

10.1016/0042-6822(91)90862-6

10.1006/viro.1996.0147

10.1128/JVI.68.11.7418-7425.1994

10.1016/0042-6822(91)90881-B

10.1006/viro.1995.1192

10.1093/emboj/18.11.3164

10.1128/JVI.74.15.6725-6733.2000

10.1128/JVI.68.9.5804-5810.1994

10.1016/S0014-5793(99)00321-X

10.1016/0042-6822(89)90539-4

Hardy WR, 1989, Processing the nonstructural polyproteins of Sindbis virus: nonstructural proteinase is in the C‐terminal half of nsP2 and functions both in cis and in trans, J Virol, 63, 4653, 10.1128/jvi.63.11.4653-4664.1989

10.1016/0042-6822(92)90268-T

10.1099/0022-1317-69-9-2165

10.1016/0042-6822(90)90310-N

10.1006/viro.1994.1338

LaStarza MW, 1994, Genetic analysis of the nsP3 region of Sindbis virus: evidence for roles in minus‐strand and subgenomic RNA synthesis, J Virol, 68, 5781, 10.1128/jvi.68.9.5781-5791.1994

Hahn YS, 1989, Mapping of RNA‐temperature‐sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4, J Virol, 63, 1194, 10.1128/jvi.63.3.1194-1202.1989

10.1016/0042-6822(90)90052-S

Lemm JA, 1990, Mutations which alter the level or structure of nsP4 can affect the efficiency of Sindbis virus replication in a host‐dependent manner, J Virol, 64, 3001, 10.1128/jvi.64.6.3001-3011.1990

Kobiler D, 1999, A single nucleotide change in the 5′ noncoding region of Sindbis virus confers neurovirulence in rats, J Virol, 73, 10440, 10.1128/JVI.73.12.10440-10446.1999

10.1128/JVI.64.4.1639-1647.1990

Hill KR, 1997, RNA–RNA recombination in Sindbis virus: roles of the 3′ conserved motif, poly(A) tail, and nonviral sequences of template RNAs in polymerase recognition and template switching, J Virol, 71, 2693, 10.1128/jvi.71.4.2693-2704.1997

10.1128/JVI.74.20.9776-9785.2000

10.1073/pnas.79.17.5235

Raju R, 1991, Analysis of Sindbis virus promoter recognition in vivo, using novel vectors with two subgenomic mRNA promoters, J Virol, 65, 2501, 10.1128/jvi.65.5.2501-2510.1991

Levis R, 1990, Promoter for Sindbis virus RNA‐dependent subgenomic RNA transcription, J Virol, 64, 1726, 10.1128/jvi.64.4.1726-1733.1990

10.1126/science.2922607

10.1128/JVI.71.1.248-258.1997

Dubuisson J, 1993, Sindbis virus attachment: isolation and characterization of mutants with impaired binding to vertebrate cells, J Virol, 67, 3363, 10.1128/jvi.67.6.3363-3374.1993

10.1128/JVI.75.8.3873-3884.2001

10.1002/j.1460-2075.1994.tb06587.x

Shirako Y, 1994, Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus‐strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus‐ strand RNA synthesis, J Virol, 68, 1874, 10.1128/jvi.68.3.1874-1885.1994

Lemm JA, 1998, Template‐dependent initiation of Sindbis virus RNA replication in vitro, J Virol, 72, 6546, 10.1128/JVI.72.8.6546-6553.1998

10.1016/0042-6822(81)90499-2

10.1016/S0022-2836(83)80319-2

10.1016/0022-2836(82)90138-3

10.1016/0042-6822(83)90404-X

Tsiang M, 1985, Studies of defective interfering RNAs of Sindbis virus with and without tRNAAsp sequences at their 5′ termini, J Virol, 54, 38, 10.1128/jvi.54.1.38-44.1985

10.1016/0092-8674(86)90492-7

10.1073/pnas.84.14.4811

10.1242/jcs.1987.Supplement_7.17

10.1006/viro.1994.1133

10.1128/jvi.63.12.5310-5318.1989

10.1128/jvi.67.11.6439-6446.1993

Rumenapf T, 1994, Subgenomic mRNA of Aura alphavirus is packaged into virions, J Virol, 68, 56, 10.1128/jvi.68.1.56-62.1994

Rumenapf T, 1995, Aura alphavirus subgenomic RNA is packaged into virions of two sizes, J Virol, 69, 1741, 10.1128/jvi.69.3.1741-1746.1995

Kolykhalov AA, 1992, Obtaining infectious Venezuelan equine encephalomyelitis virus based on a full length DNA copy of its genome, Dokl Akad Nauk, 327, 160

10.1128/JVI.70.6.3781-3787.1996

10.1006/viro.1995.1022

10.1128/JVI.74.2.914-922.2000

10.1073/pnas.89.7.2679

10.1128/JVI.71.4.3031-3038.1997

10.1038/nbt1291-1356

10.1006/viro.1997.8878

10.1128/jvi.68.12.8111-8117.1994

10.1038/nbt1194-1127

10.1099/0022-1317-77-6-1323

10.1073/pnas.88.8.3253

10.1038/nbt0893-916

10.1128/jvi.65.8.4017-4025.1991

10.1128/jvi.69.12.7391-7401.1995

10.1128/jvi.71.4.2819-2829.1997

10.1128/JVI.73.2.1092-1098.1999

10.1006/viro.1994.1046

10.1073/pnas.96.8.4598

Frolov I, 1994, Comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogenicity in BHK cells, J Virol, 68, 1721, 10.1128/jvi.68.3.1721-1727.1994

10.1073/pnas.95.22.12989

10.1128/JVI.73.5.3854-3865.1999

10.1128/JVI.74.20.9802-9807.2000

10.1006/viro.1996.8364

10.1089/hum.1995.6.9-1161

10.1128/JVI.70.1.508-519.1996

10.1038/sj.gt.3300589

10.1038/nbt0698-562

Ivanova L, 1999, Regulated expression of a Sindbis virus replicon by herpesvirus promoters, J Virol, 73, 1998, 10.1128/JVI.73.3.1998-2005.1999

10.1128/JVI.72.2.950-958.1998

10.1038/74493

10.1006/viro.1999.9961

Polo JM, 1990, Attenuating mutations in glycoproteins E1 and E2 of Sindbis virus produce a highly attenuated strain when combined in vitro, J Virol, 64, 4438, 10.1128/jvi.64.9.4438-4444.1990

10.1016/0042-6822(91)90114-Q

10.1128/JVI.74.24.11849-11857.2000

10.1128/JVI.74.19.9294-9299.2000

10.1128/JVI.74.9.4207-4213.2000

Walker DH, 1976, Lymphoreticular and myeloid pathogenesis of Venezuelan equine encephalitis in hamsters, Am J Pathol, 84, 351

10.1177/030098589102800509

Johnston RE, 1996, Fields Virology, 843

Murphy FA, 1970, The role of extraneural arbovirus infection in the pathogenesis of encephalitis. An electron microscopic study of Semliki Forest virus infection in mice, Lab Invest, 22, 318

10.1093/infdis/127.2.129

10.1093/infdis/127.2.121

10.1006/viro.1996.0508

10.1128/JVI.73.12.10387-10398.1999

10.1006/viro.1998.9367

10.1016/S0264-410X(99)00142-5

10.1016/S0264-410X(00)00113-4

10.1073/pnas.89.1.207

10.1038/nbt0897-763

10.1002/(SICI)1097-0215(19990105)80:1<110::AID-IJC21>3.0.CO;2-8

10.1128/JVI.75.23.11677-11685.2001

10.1006/viro.2000.0635

10.1016/S0264-410X(01)00026-3

10.1016/S0264-410X(01)00126-8

10.1016/S0264-410X(01)00034-2

10.1016/S0264-410X(99)00200-5

10.1006/viro.2000.0241

10.1006/viro.1996.8381

10.1002/rmv.307

Velders MP, 2001, Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA, Cancer Res, 61, 7861

10.1046/j.1523-1747.2000.00904.x

10.1038/sj.gt.3301004

10.1038/10548

10.1016/0264-410X(94)90074-4

10.1099/0022-1317-82-7-1737

10.1086/319857

10.4049/jimmunol.166.10.6218

10.1089/10430340150218387

10.1099/0022-1317-79-10-2405

Leitner WW, 2000, Enhancement of tumor‐specific immune response with plasmid DNA replicon vectors, Cancer Res, 60, 51

Reap E, 2001, AIDS Vaccine 2001, 2001

10.1089/aid.1998.14.1369

10.1006/viro.1998.9357

10.1099/0022-1317-80-5-1189

10.1099/0022-1317-81-3-749

10.1016/S0264-410X(98)00224-2

10.1046/j.1365-3083.2001.00951.x

10.1038/sj.gt.3300841

10.1038/sj.gt.3301257

10.1006/viro.2000.0566

10.1128/JVI.72.8.6907-6910.1998

10.1128/JVI.74.1.371-378.2000

10.1128/JVI.74.22.10623-10630.2000

10.1128/IAI.69.9.5709-5715.2001

10.1006/viro.2001.1012

10.1128/JVI.75.6.2660-2664.2001