Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các xấp xỉ gián đoạn hình phạt nội tại gần tối ưu cho các bài toán elliptic đối xứng trên các lưới không khớp
Tóm tắt
Trong bài báo này, chúng tôi xem xét một xấp xỉ gián đoạn hình phạt nội tại cho các bài toán elliptic đối xứng bậc hai trên các lưới không khớp. Kết quả chính là một ước lượng sai số gần như tối ưu cho xấp xỉ hình phạt nội tại của bài toán gốc dựa trên việc chia miền thành một số lượng hữu hạn các miền con. Hơn nữa, chúng tôi cung cấp một phân tích sai số cho xấp xỉ phần tử hữu hạn của công thức hình phạt. Cuối cùng, chúng tôi trình bày các thí nghiệm số cho một loạt các bài toán bậc hai mẫu.
Từ khóa
#hình phạt nội tại #xấp xỉ gián đoạn #bài toán elliptic đối xứng #lưới không khớp #phân tích sai sốTài liệu tham khảo
Arbogast, T., Cowsar, L.C., Wheeler, M.F., Yotov, I.: Mixed finite element methods on non-matching multi-block grids. SIAM J. Numer. Anal. 37, 1295–1315 (2000)
Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)
Arnold, D., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)
Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Comput. 5, 207–213 (1970)
Babuška, I.: The finite element method with penalty. Math. Comp. 27(122), 221–228 (1973)
Bjorstad, P.E., Espedal, M.S., Keyes, D.E.: 9th International Conference on Domain Decomposition Methods. Norway: Ullensvang, 1996, Published by ddm.org, 1998
Bramble, J.H., Pasciak, J.E., Schatz, A.: The construction of preconditioners for elliptic problems by substructuring, I. Math. Comp. 47, 103–134 (1986)
Bramble, J.H., Pasciak, J.E., Schatz, A.: The construction of preconditioners for elliptic problems by substructuring, IV. Math. Comp. 53, 1–24 (1989)
Bramble, J.H., Pasciak, J.E., Vassilevski, P.S.: Computational scales of Sobolev norms with application to preconditioning. Math. Comp. 69, 463–480 (2000)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Berlin-Heidelberg-New York: Springer, 1991
Cao, Y., Gunzburger, M.D.: Least–squares finite element approximations to solutions of interface problems. SIAM J. Numer. Anal. 35, 393–405 (1998)
Chan, T.F., Kako, T., Kawarada, H., Pironneau, O.: Domain Decomposition Methods in Science and Engineering. 12-th International Conference in Chiba, Japan, 1999, Published by ddm.org, 2001
Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North Holland, 1978
Cockburn, B., Dawson, C.: Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems. Preprint, 2001
Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. Lecture Notes in Physics 58, 207–216 (1978)
Feistauer, M., Felcman, J., Lucacova-Medvidova, M., Warenicke, G.: Error estimates of a combined finite volume - finite element method for nonlinear convection-diffusion problems. Preprint, 2001
Grisvard, P.: Elliptic Problems in Non-smooth Domains. Boston: Pitman, 1985
Lai, C.-H., Bjorstad, P., Cross, M., Widlund, O.: Eleventh Int. Conference on Domain Decomposition Methods. UK: Greenwich, 1998, Published by ddm.org, 1999
Lazarov, R.D., Pasciak, J.E., Vassilevski, P.S.: Iterative solution of a coupled mixed and standard Galerkin discretization method for elliptic problems. Numer. Lin. Alg. Appl. 8, 13–31 (2001)
Lazarov, R.D., Pasciak, J.E., Vassilevski, P.S.: Mixed finite element methods for elliptic problems on non-matching grids. In: Large-Scale Scientific Computations of Engineering and Environmental Problems II M. Griebel, et al., (Eds), Vieweg, Notes on Numerical Fluid Mechanics 73, 2000, pp. 25–35
Lazarov, R.D., Tomov, S.Z., Vassilevski, P.S.: Interior penalty discontinuous approximations of elliptic problems. Comput. Method Appl. Math. 1(4), 367–382 (2001)
Lions, J.-L.: Problèmes aux limites nonhomogène à donées irrégulières; Une méthode d’approximation. In: Numerical Analysis of Partial Differential Equations C.I.M.E. 2 Ciclo, Ispra, 1967 (ed), Edizioni Cremonese, Rome, 1968, pp. 283–292
Lions, J.-L., Peetre, J.: Sur une class d’espaces d’interpolation, Institute des Hautes Etudes Scientifique. Publ. Math. 19, 5–68 (1994)
Nitsche, J.: Uber ein Variationsprinzip zur Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (Collection of articles dedicated to Lothar Collatz on his sixtieth birthday) 1971, 9–15
Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for the interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I, Computational Geosciences 3(3,4), 337–360 (1999)
Rusten, T., Vassilevski, P.S., Winther, R.: Interior penalty preconditioners for mixed finite element approximations of elliptic problems. Math. Comp. 65, 447–466 (1996)
Schöberl, J.: Robust Multigrid Methods for Parameter Dependent Problems. Ph. D. Thesis, Linz: University of Linz, June, 1999
Wieners, C., Wohlmuth, B.I.: The coupling of mixed and conforming finite element discretizations. In: Domain Decomposition Methods 10, J. Mandel, C. Farhat, X.-C. Cai, (eds) Contemporary Math. 218, 1998, pp. 547–554