Alginate Production by Pseudomonas putida Creates a Hydrated Microenvironment and Contributes to Biofilm Architecture and Stress Tolerance under Water-Limiting Conditions

Journal of Bacteriology - Tập 189 Số 22 - Trang 8290-8299 - 2007
Woo-Suk Chang1, Martijn van de Mortel1, Lindsey Nielsen1, Gabriela Nino de Guzman2, Xiaohong Li2, Larry J. Halverson2,1
1Graduate Program in Microbiology
2Department of Plant Pathology, Iowa State University, Ames, Iowa, 50011

Tóm tắt

ABSTRACT Biofilms exist in a variety of habitats that are routinely or periodically not saturated with water, and residents must integrate cues on water abundance (matric stress) or osmolarity (solute stress) into lifestyle strategies. Here we examine this hypothesis by assessing the extent to which alginate production by Pseudomonas putida strain mt-2 and by other fluorescent pseudomonads occurs in response to water limitations and how the presence of alginate in turn influences biofilm development and stress tolerance. Total exopolysaccharide (EPS) and alginate production increased with increasing matric, but not solute, stress severity, and alginate was a significant component, but not the major component, of EPS. Alginate influenced biofilm architecture, resulting in biofilms that were taller, covered less surface area, and had a thicker EPS layer at the air interface than those formed by an mt-2 algD mutant under water-limiting conditions, properties that could contribute to less evaporative water loss. We examined this possibility and show that alginate reduces the extent of water loss from biofilm residents by using a biosensor to quantify the water potential of individual cells and by measuring the extent of dehydration-mediated changes in fatty acid composition following a matric or solute stress shock. Alginate deficiency decreased survival of desiccation not only by P. putida but also by Pseudomonas aeruginosa PAO1 and Pseudomonas syringae pv. syringae B728a. Our findings suggest that in response to water-limiting conditions, pseudomonads produce alginate, which influences biofilm development and EPS physiochemical properties. Collectively these responses may facilitate the maintenance of a hydrated microenvironment, protecting residents from desiccation stress and increasing survival.

Từ khóa


Tài liệu tham khảo

10.1128/JB.182.13.3809-3815.2000

10.1128/AEM.68.9.4604-4612.2002

10.1128/jb.171.5.2312-2317.1989

Bjerkan, T. M., C. L. Bender, H. Ertesvag, F. Drablos, M. K. Fakhr, L. A. Preston, G. Skjak-Braek, and S. Valla. 2004. The Pseudomonas syringae genome encodes a combined mannuronan C-5-epimerase and O-acetylhydrolase, which strongly enhances the predicted gel-forming properties of alginates. J. Biol. Chem. 279 : 28920-28929.

Blumenkrantz, N., and G. Asboe-Hansen. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. 54 : 484-489.

10.1016/0003-2697(76)90527-3

Breedveld, M. W., L. P. T. M. Zevenhuizen, and A. J. B. Zehnder. 1991. Osmotically-regulated trehalose accumulation and cyclic β-(1,2)-glucan excretion by Rhizobium leguminosarum biovar trifolii TA-1. Arch. Microbiol. 156 : 501-506.

10.1128/JB.185.20.6199-6204.2003

DeVault, J. D., K. Kimbara, and A. M. Chakrabarty. 1990. Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa. Mol. Microbiol. 4 : 737-745.

Dubois, M., K. A. Giles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28 : 350-356.

Edwards, K. J., and N. A. Saunders. 2001. Real-time PCR used to measure stress-induced changes in the expression of the genes of the alginate pathway of Pseudomonas aeruginosa. J. Appl. Microbiol. 91 : 29-37.

10.1128/aem.61.2.513-517.1995

10.1128/aem.56.2.436-443.1990

10.1073/pnas.76.4.1648

10.1128/AEM.66.6.2414-2421.2000

Harris, R. F. 1980. Effect of water potential on microbial growth and activity, p. 23-95. In J. F. Parr, W. R. Gardner, and L. F. Elliott (ed.), Water potential relations in soil microbiology. Soil Science Society of America, Madison, WI.

10.1128/AEM.71.4.1915-1922.2005

10.1128/JB.183.18.5395-5401.2001

10.1128/JB.186.14.4466-4475.2004

Kachlany, S. C., S. B. Levery, J. S. Kim, B. L. Reuhs, L. W. Lion, and W. C. Ghiorse. 2001. Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environ. Microbiol. 3 : 774-784.

10.1128/JB.181.23.7176-7184.1999

Keith, R. C., L. M. W. Keith, G. Hernandez-Guzman, S. R. Uppalapati, and C. L. Bender. 2003. Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Microbiology 149 : 1127-1138.

10.1128/aem.61.6.2172-2179.1995

10.1128/aem.60.9.3292-3299.1994

Laue, H., A. Schenk, H. Li, L. Lambertsen, T. R. Neu, S. Molin, and M. S. Ullrich. 2006. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology 152 : 2909-2918.

Lindow, S. E., D. C. Arny, and C. D. Upper. 1978. Erwinia herbicola—bacterial ice nucleus active in increasing frost injury to corn. Phytopathology 68 : 523-527.

Ma, J. F., P. V. Phibbs, and D. J. Hassett. 1997. Glucose stimulates alginate production and algD transcription in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 148 : 217-221.

Miller, W. G., J. H. Leveau, and S. E. Lindow. 2000. Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol. Plant-Microbe Interact. 13 : 1243-1250.

10.1128/AEM.70.1.346-355.2004

Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. Martins dos Santos, D. E. Fouts, S. R. Gill, M. Pop, M. Holmes, L. Brinkac, M. Beanan, R. T. DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. Khouri, I. Hance, P. Chris Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. Utterback, M. Rizzo, K. Lee, D. Kosack, D. Moestl, H. Wedler, J. Lauber, D. Stjepandic, J. Hoheisel, M. Straetz, S. Heim, C. Kiewitz, J. A. Eisen, K. N. Timmis, A. Dusterhoft, B. Tummler, and C. M. Fraser. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4 : 799-808.

10.1128/aem.60.2.740-745.1994

Papendick, R. I., and G. S. Campbell. 1980. Theory and measurement of water potential, p. 1-22. In J. F. Parr, W. R. Gardner, and L. F. Elliott (ed.), Water potential relations in soil microbiology. Soil Science Society of America, Madison, WI.

10.1128/AEM.72.3.1988-1996.2006

10.1128/JB.187.12.4033-4041.2005

Read, R. R., and J. W. Costerton. 1987. Purification and characterization of adhesive exopolysaccharides from Pseudomonas putida and Pseudomonas fluorescens. Can. J. Microbiol. 33 : 1080-1090.

10.1128/aem.58.4.1284-1291.1992

Robyt, J. F. 1998. Essentials of carbohydrate chemistry, p. 157-227. Springer-Verlag, New York, NY.

10.1128/AEM.66.9.4037-4044.2000

10.1128/AEM.67.12.5683-5693.2001

10.1038/nbt1183-784

Singh, P. K., A. L. Schaefer, M. R. Parsek, T. O. Moninger, M. J. Welsh, and E. P. Greenberg. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407 : 762-764.

Singh, S., B. Koehler, and W. F. Fett. 1992. Effect of osmolarity and dehydration on alginate production by fluorescent pseudomonads. Curr. Microbiol. 25 : 335-339.

Steinberger, R. E., A. R. Allen, H. G. Hansa, and P. A. Holden. 2002. Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa unsaturated biofilms. Microb. Ecol. 43 : 416-423.

Sutherland, I. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147 : 3-9.

van de Mortel, M., W.-S. Chang, and L. J. Halverson. 2004. Differential tolerance of Pseudomonas putida biofilm and planktonic cells to desiccation. Biofilms 1 : 361-368.

van de Mortel, M., and L. J. Halverson. 2004. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol. Microbiol. 52 : 735-750.

Windgassen, M., A. Urban, and K. E. Jaeger. 2000. Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 193 : 201-205.

Winston, P. W., and D. H. Bates. 1960. Saturated solutions for the control of humidity in biological research. Ecology 41 : 232-237.

Wozniak, D. J., T. J. Wyckoff, M. Starkey, R. Keyser, P. Azadi, G. A. O'Toole, and M. R. Parsek. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 100 : 7907-7912.

Wright, C. A., and G. A. Beattie. 2004. Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101 : 3269-3274.

Xavier, J. B., and K. R. Foster. 2007. Cooperation and conflict in microbial biofilms. Proc. Natl. Acad. Sci. USA 104 : 876-881.

10.1016/0076-6879(86)18062-1

Yu, J., A. Penaloza-Vazquez, A. M. Chakrabarty, and C. L. Bender. 1999. Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol. Microbiol. 33 : 712-720.