Algal Biofuels: Current Status and Key Challenges

Energies - Tập 12 Số 10 - Trang 1920
Marwa Gamal Saad1,2, Noura S. Dosoky3, M. Sh. Zoromba4,5, Hesham M. Shafik1
1Department of Biology, Faculty of Science, Port-Said University, Port-Said 42521, Egypt
2Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843 USA
3Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
4Chemical and Materials Engineering Department, King Abdulaziz University, Rabigh 21911, Saudi Arabia
5Department of Chemistry, Faculty of Science, Port-Said University, Port Said 42521, Egypt

Tóm tắt

The current fossil fuel reserves are not sufficient to meet the increasing demand and very soon will become exhausted. Pollution, global warming, and inflated oil prices have led the quest for renewable energy sources. Algal biofuels represent a potential source of renewable energy. Algae, as the third generation feedstock, are suitable for biodiesel and bioethanol production due to their quick growth, excellent biomass yield, and high lipid and carbohydrate contents. With their huge potential, algae are expected to surpass the first and second generation feedstocks. Only a few thousand algal species have been investigated as possible biofuel sources, and none of them was ideal. This review summarizes the current status of algal biofuels, important steps of algal biofuel production, and the major commercial production challenges.

Từ khóa


Tài liệu tham khảo

Bhore, N. (2019, May 17). Energy Outlook: A View to 2040. Available online: https://www.api.org/~/media/files/certification/engine-oil-diesel/forms/whats-new/6-energy-outlook-view to 2040-nbhore-exxonmobil.pdf.

Raheem, 2018, A review on sustainable microalgae based biofuel and bioenergy production: Recent developments, J. Clean. Prod., 181, 42, 10.1016/j.jclepro.2018.01.125

Judge, D., and Earnshaw, D. (2003). The European Parliament, Palgrave.

Office of Energy Efficiency & Renewable Energy (2019, May 17). Biofuels Basics, Available online: https://www.energy.gov/eere/bioenergy/biofuels-basics.

European Biofuels Technology Platform (2016). Strategic Research and Innovation Agenda 2016, European Biofuels Technology Platform.

Sheahan, 2011, Metabolic engineering of algae for fourth generation biofuels production, Energy Environ. Sci., 4, 2451, 10.1039/c0ee00593b

Rosenthal, E. (The New York Times, 2007). UN report describes risks of inaction on climate change, The New York Times.

Brown, 2013, A review of cellulosic biofuel commercial-scale projects in the United States, Biofuels Bioprod. Biorefin., 7, 235, 10.1002/bbb.1387

Nigam, 2010, Finite duration root nyquist pulses with maximum in-band fractional energy, IEEE Commun. Lett., 14, 797, 10.1109/LCOMM.2010.09.100314

Dutta, 2014, Evolution retrospective for alternative fuels: First to fourth generation, Renew. Energy, 69, 114, 10.1016/j.renene.2014.02.044

Sawin, J.L., Martinot, E., Sonntag-O’Brien, V., McCrone, A., Roussell, J., Barnes, D., Flavin, C., Mastny, L., Kraft, D., and Wang, S. (2013). Renewables 2010—Global Status Report, Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH.

Shuba, 2018, Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review, Renew. Sustain. Energy Rev., 81, 743, 10.1016/j.rser.2017.08.042

Beacham, 2017, Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment, Algal Res., 25, 90, 10.1016/j.algal.2017.04.028

Levitan, 2014, Diatoms: A fossil fuel of the future, Trends Biotechnol., 32, 117, 10.1016/j.tibtech.2014.01.004

Shafik, 2015, Impact of nitrogen regime on fatty acid profiles of Desmodesmus quadricaudatus and Chlorella sp. and ability to produce biofuel, Acta Bot. Hung., 57, 205, 10.1556/ABot.57.2015.1-2.16

Adeniyi, 2018, Algae biofuel: Current status and future applications, Renew. Sustain. Energy Rev., 90, 316, 10.1016/j.rser.2018.03.067

Tsukahara, 2005, Liquid fuel production using microalgae, J. Jpn. Pet. Inst., 48, 251, 10.1627/jpi.48.251

Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001

Rawat, 2013, Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Appl. Energy, 103, 444, 10.1016/j.apenergy.2012.10.004

Lam, 2011, Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection, Biotechnol. Adv., 29, 124, 10.1016/j.biotechadv.2010.10.001

Miller, 2012, Effects of light and temperature on fatty acid production in Nannochloropsis salina, Energies, 5, 731, 10.3390/en5030731

Zheng, 2013, High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production, Appl. Energy, 108, 281, 10.1016/j.apenergy.2013.02.059

Hu, 2008, Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances, Plant J., 54, 621, 10.1111/j.1365-313X.2008.03492.x

Love, 2013, Microtools for single-cell analysis in biopharmaceutical development and manufacturing, Trends Biotechnol., 31, 280, 10.1016/j.tibtech.2013.03.001

Zheng, 2012, Microalgal motility measurement microfluidic chip for toxicity assessment of heavy metals, Anal. Bioanal. Chem., 404, 3061, 10.1007/s00216-012-6408-6

Hashemi, J., Worrall, C., Vasilcanu, D., Fryknäs, M., Sulaiman, L., Karimi, M., Weng, W.H., Lui, W.O., Rudduck, C., and Axelson, M. (2011). Molecular characterization of acquired tolerance of tumor cells to picropodophyllin (PPP). PLoS ONE, 6.

Lim, 2014, Integrated microfluidic platform for multiple processes from microalgal culture to lipid extraction, Anal. Chem., 86, 8585, 10.1021/ac502324c

Deng, 2014, Development of flow through dielectrophoresis microfluidic chips for biofuel production: Sorting and detection of microalgae with different lipid contents, Biomicrofluidics, 8, 064120, 10.1063/1.4903942

Wang, 2013, Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production, Bioresour. Technol., 127, 494, 10.1016/j.biortech.2012.08.016

Gould, 2015, High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform, J. R. Soc. Interface, 12, 20150216, 10.1098/rsif.2015.0216

Hammar, 2015, Single-cell screening of photosynthetic growth and lactate production by cyanobacteria, Biotechnol. Biofuels, 8, 193, 10.1186/s13068-015-0380-2

Liao, Q., Chang, J.S., Herrmann, C., and Xia, A. (2018). Bioreactors for Microbial Biomass and Energy Conversion, Springer.

Lee, 2016, Sustainable production of bioethanol from renewable brown algae biomass September, Biomass Bioenergy, 92, 70, 10.1016/j.biombioe.2016.03.038

Brennan, 2010, Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev., 14, 557, 10.1016/j.rser.2009.10.009

Huang, 2010, Biodiesel production by microalgal biotechnology, Appl. Energy, 87, 38, 10.1016/j.apenergy.2009.06.016

Suganya, 2016, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach, Renew. Sustain. Energy Rev., 55, 909, 10.1016/j.rser.2015.11.026

Leite, 2013, Bioresource technology algal biofuels: Challenges and opportunities, Bioresour. Technol., 145, 134, 10.1016/j.biortech.2013.02.007

Mata, 2010, Microalgae for biodiesel production and other applications: A review, Renew. Sustain. Energy Rev., 14, 217, 10.1016/j.rser.2009.07.020

Hugo, 2017, Biological CO2 fixation with production of microalgae in wastewater: A review, Renew. Sustain. Energy Rev., 76, 379, 10.1016/j.rser.2017.02.038

Schenk, 2008, Second generation biofuels: High-effjciency microalgae for biodiesel production, Bioenergy Res., 1, 20, 10.1007/s12155-008-9008-8

Daliry, 2017, Investigation of optimal condition for Chlorella vulgaris microalgae growth, Glob. J. Environ. Sci. Manag., 3, 217

Chen, 1994, Effects of pH on the growth and carbon uptake of marine phytoplankton, Mar. Ecol. Ser., 109, 83, 10.3354/meps109083

Huppe, 1994, Integration of carbon and nitrogen metabolism in plant and algal cells, Annu. Rev. Plant Biol., 45, 577, 10.1146/annurev.pp.45.060194.003045

Andrews, 1968, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioenergy, 10, 707, 10.1002/bit.260100602

Martinez, 1991, Morphometric and stereologic analysis of Chlorella vulgaris under heterotrophic growth conditions, Ann. Bot., 67, 239, 10.1093/oxfordjournals.aob.a088128

Scarsella, 2010, Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors, Chem. Eng., 20, 85

Butterfi, 1969, Harvesting of algae grown in agricultural wastewaters, Trans. Geophys. Union., 50, 612

Chen, 2015, Dewatering and drying methods for Microalgae, Dry. Technol., 33, 443, 10.1080/07373937.2014.997881

Grima, 2003, Recovery of microalgal biomass and metabolites: Process options and economics, Biotechnol. Adv., 20, 491, 10.1016/S0734-9750(02)00050-2

Lee, 2013, In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules, Anal. Chem., 85, 8749, 10.1021/ac401836j

Divakaran, 2002, Flocculation of river silt using chitosan, Water Res., 36, 2414, 10.1016/S0043-1354(01)00436-5

Giovannoni, 1990, Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton, Appl. Environ. Microbiol., 56, 2572, 10.1128/aem.56.8.2572-2575.1990

Bosma, 2003, Ultrasound, a new separation technique to harvest microalgae, J. Appl. Phycol., 15, 143, 10.1023/A:1023807011027

1998, Ultrasonic Separation of Suspended Particles—Part I: Fundamentals, Acta Acust. United Acust., 84, 432

Guieysse, 2006, Algal-bacterial processes for the treatment of hazardous contaminants: A review, Water Res., 40, 2799, 10.1016/j.watres.2006.06.011

Hossain, 2008, Biodiesel fuel production from microalgae as renewable energy, Am. J. Biochem. Biotechnol., 4, 250, 10.3844/ajbbsp.2008.250.254

Ward, 2014, Anaerobic digestion of algae biomass: A review, Algal Res., 5, 204, 10.1016/j.algal.2014.02.001

Oncel, 2015, Biohydrogen production from model microalgae Chlamydomonas reinhardtii: A simulation of environmental conditions for outdoor experiments, Int. J. Hydrogen Energy, 40, 7502, 10.1016/j.ijhydene.2014.12.121

RangaRao, 2007, Infmuence of CO2 on growth and hydrocarbon production in Botryococcus braunii, J. Microbiol. Biotechnol., 17, 414

Wicks, G., Simon, J., Zidan, R., Brigmon, R., Fischman, G., Arepalli, S., Norris, A., and McCluer, M. (2013). Biogasification of Marine Algae Nannochloropsis Oculata, John Wiley & Sons, Inc.

Ghasemi, 2012, Microalgae biofuel potentials, Appl. Biochem. Microbiol., 48, 126, 10.1134/S0003683812020068

Archana, 2012, Cyanobacterial hydrogen production: A step towards clean environment, Int. J. Hydrogen Energy, 37, 139, 10.1016/j.ijhydene.2011.09.100

Markou, 2012, Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels, Appl. Microbiol. Biotechnol., 96, 631, 10.1007/s00253-012-4398-0

Chen, 2013, Microalgae-based carbohydrates for biofuel production, Biochem. Eng. J., 78, 1, 10.1016/j.bej.2013.03.006

Harun, 2010, Microalgal biomass as a fermentation feedstock for bioethanol production, J. Chem. Technol. Biotechnol., 85, 199, 10.1002/jctb.2287

Hamelinck, 2005, Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term, Biomass Bioenergy, 28, 384, 10.1016/j.biombioe.2004.09.002

Ehimen, 2010, Variables affecting the in situ transesterification of microalgae lipids, Fuel, 89, 677, 10.1016/j.fuel.2009.10.011

Huang, 2015, Biodiesel production from microalgae oil catalyzed by a recombinant lipase, Bioresour. Technol., 180, 47, 10.1016/j.biortech.2014.12.072

Tang, 2011, Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel, Appl. Energy, 88, 3324, 10.1016/j.apenergy.2010.09.013

Vargas, 2011, Microalgae biodiesel via in situ methanolysis, J. Chem. Technol. Biotechnol., 86, 1418, 10.1002/jctb.2652

Attia, 2013, Biodiesel production from spirulina-platensis microalgae by in-situ transesterification process, J. Sustain. Bioenergy Syst., 3, 224, 10.4236/jsbs.2013.33031

Johnson, 2009, Production of biodiesel fuel from the Microalga Schizochytrium limacinum by direct transesterification of algal biomass, Energy Fuels, 23, 5179, 10.1021/ef900704h

Afify, 2010, Enhancement of biodiesel production from different species of algae, Grasas y Aceites, 61, 416, 10.3989/gya.021610

Saad, 2018, Impact of different nitrogen concentrations on biomass productivity, lipid content and target fatty acids within Chlorella sp. and Desmodesmus quadricaudatus to enhance biodiesel production, Int. J. Sci. Technol. Res., 7, 123

Saad, 2017, The challenges of biodiesel production from Oscillatoria sp., J. Int. J. Adv. Res., 5, 1316, 10.21474/IJAR01/6032

Choi, 2010, Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production, Bioresour. Technol., 101, 5330, 10.1016/j.biortech.2010.02.026

Nayak, 2014, Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor, Int. J. Hydrogen Energy, 39, 7553, 10.1016/j.ijhydene.2013.07.120

Miyamoto, 1979, Hydrogen production by the thermophilic alga Mastigocladus laminosus: Hydrogen production by the thermophilic alga Mastigocladus laminosus: Effects of nitrogen, temperature, and inhibition of photosynthesis, Appl. Environ. Microbiol., 38, 440, 10.1128/aem.38.3.440-446.1979

Barreiro, 2013, Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects, Biomass Bioenergy, 53, 113, 10.1016/j.biombioe.2012.12.029

Biller, 2012, Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process, Algal Res., 1, 70, 10.1016/j.algal.2012.02.002

Biller, 2011, Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content, Bioresour. Technol., 102, 215, 10.1016/j.biortech.2010.06.028

Eboibi, 2014, Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp., Bioresour Technol., 170, 20, 10.1016/j.biortech.2014.07.083

Huang, 2016, Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp., Fuel, 183, 9, 10.1016/j.fuel.2016.06.013

Alba, 2012, (Wim) Hydrothermal treatment (HTT) of Microalgae: Evaluation of the process as conversion method in an algae biorefinery concept, Energy Fuels, 26, 642, 10.1021/ef201415s

Hirano, 1997, CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation, Energy, 22, 137, 10.1016/S0360-5442(96)00123-5

Wu, 1999, Liquid-saturated hydrocarbons resulting from pyrolysis of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica, Mar. Biotechnol., 1, 346, 10.1007/PL00011785

Zamalloa, 2012, Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions, Appl. Energy, 92, 733, 10.1016/j.apenergy.2011.08.017

Inglesby, 2012, Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell, Energy Environ. Sci., 5, 7996, 10.1039/c2ee21659k

Nguyen, 2015, Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser, Environ. Technol., 36, 556, 10.1080/09593330.2014.953212

Rizzo, 2013, Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior, Appl. Energy, 102, 24, 10.1016/j.apenergy.2012.08.039

Miao, 2004, Fast pyrolysis of microalgae to produce renewable fuels, J. Anal. Appl. Pyrolysis, 71, 855, 10.1016/j.jaap.2003.11.004

Babich, 2011, Catalytic pyrolysis of microalgae to high-quality liquidbio-fuels, Biomass Bioenergy, 35, 3199, 10.1016/j.biombioe.2011.04.043

Wang, 2015, Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: Enhancing microalgae harvesting and lipid content, Lett. Appl. Microbiol., 60, 497, 10.1111/lam.12403

Grierson, 2009, Thermal characterisation of microalgae under slow pyrolysis conditions, J. Anal. Appl. Pyrolysis, 85, 118, 10.1016/j.jaap.2008.10.003

Pan, 2010, The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils, Bioresour. Technol., 101, 4593, 10.1016/j.biortech.2010.01.070

Grierson, 2011, Properties of oil and char derived from slow pyrolysis of Tetraselmis chui, Bioresour. Technol., 102, 8232, 10.1016/j.biortech.2011.06.010

Onwudili, 2013, Catalytic hydrothermal gasification of algae for hydrogen production: Composition of reaction products and potential for nutrient recycling, Bioresour. Technol., 127, 72, 10.1016/j.biortech.2012.10.020

Khoo, 2013, Bioenergy co-products derived from microalgae biomass via thermochemical conversion—Life cycle energy balances and CO2 emissions, Bioresour. Technol., 143, 298, 10.1016/j.biortech.2013.06.004

Duman, 2014, Hydrogen production from algal biomass via steam gasification, Bioresour. Technol., 166, 24, 10.1016/j.biortech.2014.04.096

Valverde, 2013, Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae, Bioresour. Technol., 130, 321, 10.1016/j.biortech.2012.12.002

Stucki, 2009, Catalytic gasification of algae in supercritical water for biofuel production and carbon capture, Energy Environ. Sci., 2, 535, 10.1039/b819874h

Alghurabie, 2013, Fluidized bed gasification of Kingston coal and marine microalgae in a spouted bed reactor, Chem. Eng. Res. Des., 91, 1614, 10.1016/j.cherd.2013.04.024

Woertz, 2014, Life cycle GHG emissions from microalgal biodiesel–a CA-GREET model, Environ. Sci. Technol., 48, 6060, 10.1021/es403768q

Langholtz, M.H., Stokes, B.J., and Eaton, L.M. (2016). U.S. Department of Energy, Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks (Leads), Oak Ridge National Laboratory.

Raheem, 2015, Thermochemical conversion of microalgal biomass for biofuel production, Renew. Sustain. Energy Rev., 49, 990, 10.1016/j.rser.2015.04.186

Naik, 2010, Production of first and second generation biofuels: A comprehensive review, Renew. Sustain. Energy Rev., 14, 578, 10.1016/j.rser.2009.10.003

Chaiwong, 2013, Study of bio-oil and bio-char production from algae by slow pyrolysis, Biomass Bioenergy, 56, 600, 10.1016/j.biombioe.2013.05.035

Campanella, 2012, Thermolysis of microalgae and duckweed in a CO2-swept fixed-bed reactor: Bio-oil yield and compositional effects, Bioresour. Technol., 109, 154, 10.1016/j.biortech.2011.12.115

Zhang, Y., Chen, P., Liu, S., Fan, L., Zhou, N., Min, M., Cheng, Y., Peng, P., Anderson, E., and Wang, Y. (2017). Microwave-assisted pyrolysis of biomass for bio-oil production. Pyrolysis, IntechOpen.

Brand, 2014, Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol, Energy, 68, 420, 10.1016/j.energy.2014.02.086

Chen, 2015, Thermochemical conversion of microalgal biomass into biofuels: A review, Bioresour. Technol., 184, 314, 10.1016/j.biortech.2014.11.050

Shuping, 2010, Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake, Energy, 35, 5406, 10.1016/j.energy.2010.07.013

Ross, 2010, Hydrothermal processing of microalgae using alkali and organic acids, Fuel, 89, 2234, 10.1016/j.fuel.2010.01.025

Chiaramonti, 2017, Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production, Appl. Energy, 185, 963, 10.1016/j.apenergy.2015.12.001

Raza, H. (2014). Aspen Simulation of Hydrothermal Liquefaction Process for the Conversion of Algae to Renewable Fuels and Chemicals, Lamar University-Beaumont.

Dote, 1994, Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction, Fuel, 73, 1855, 10.1016/0016-2361(94)90211-9

Zou, 2010, Bio-oil production from sub-and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties, Energy Environ. Sci., 3, 1073, 10.1039/C002550J

Duan, 2010, Hydrothermal liquefaction of a microalga with heterogeneous catalysts, Ind. Eng. Chem. Res., 50, 52, 10.1021/ie100758s

Carreras, 2014, Use of microalgae residues for biogas production, Chem. Eng. J., 242, 86, 10.1016/j.cej.2013.12.053

Hidaka, 2014, Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage, Bioresour. Technol., 170, 83, 10.1016/j.biortech.2014.07.061

Costa, 2012, Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge, Bioresour. Technol., 114, 320, 10.1016/j.biortech.2012.03.011

Passos, 2013, Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment, Appl. Energy, 108, 168, 10.1016/j.apenergy.2013.02.042

Marsolek, 2014, Thermal pretreatment of algae for anaerobic digestion, Bioresour. Technol., 151, 373, 10.1016/j.biortech.2013.09.121

Laurens, 2015, Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production, Green Chem., 17, 1145, 10.1039/C4GC01612B

Aikawa, 2013, Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes, Energy Environ. Sci., 6, 1844, 10.1039/c3ee40305j

Slade, 2013, Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects, Biomass Bioenergy, 53, 29, 10.1016/j.biombioe.2012.12.019

Fasahati, 2015, Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics, Appl. Energy, 1139, 175, 10.1016/j.apenergy.2014.11.032

Teixeira, A.C.R., Sodré, J.R., Guarieiro, L.L.N., Vieira, E.D., de Medeiros, F.F., and Alves, C.T. (2016). A Review on Second and Third Generation Bioethanol Production, SAE International.

Fan, 2016, Comparative study of the oxygen tolerance of Chlorella pyrenoidosa and Chlamydomonas reinhardtii CC124 in photobiological hydrogen production, Algal Res., 16, 240, 10.1016/j.algal.2016.03.025

Antal, 2015, Multiple regulatory mechanisms in the chloroplast of green algae: Relation to hydrogen production, Photosynth. Res., 125, 357, 10.1007/s11120-015-0157-2

Das, 2015, Artificial leaf device for hydrogen generation from immobilised C. reinhardtii microalgae, J. Mater. Chem. A, 3, 20698, 10.1039/C5TA07112G

Machado, 2012, Cyanobacterial biofuel production, J. Biotechnol., 162, 50, 10.1016/j.jbiotec.2012.03.005

Wahlen, 2011, Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures, Bioresour. Technol., 102, 2724, 10.1016/j.biortech.2010.11.026

Patil, 2011, Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions, Bioresour. Technol., 102, 118, 10.1016/j.biortech.2010.06.031

Lee, 2011, Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process, Bioresour. Technol., 102, 2105, 10.1016/j.biortech.2010.08.034

Knothe, 2012, Fuel properties of highly polyunsaturated fatty acid methyl esters. Prediction of fuel properties of algal biodiesel, Energy Fuel, 26, 5265, 10.1021/ef300700v

James, 2013, Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii, Bioresour. Technol., 127, 441, 10.1016/j.biortech.2012.09.090

Dunn, 1995, Low-temperature properties of triglyceride-based diesel fuels: Transesterified methyl esters and petroleum middle distillate/Ester Blends, JAOCS, 72, 895, 10.1007/BF02542067

Antczak, 2009, Enzymatic biodiesel synthesis–key factors affecting efficiency of the process, Renew. Energy, 34, 1185, 10.1016/j.renene.2008.11.013

Khan, 2009, Prospects of biodiesel production from microalgae in India, Renew. Sustain. Energy Rev., 13, 2361, 10.1016/j.rser.2009.04.005

Bajhaiya, 2010, ALGAL BIODIESEL: The next generation biofuel for India, Asian J. Exp. Biol. Sci, 1, 728

Mohan, 2014, Algal biocathode for in situ terminal electron acceptor (TEA) production: Synergetic association of bacteria—Microalgae metabolism for the functioning of biofuel cell, Bioresour. Technol., 166, 566, 10.1016/j.biortech.2014.05.081

Angenent, 2004, Production of bioenergy and biochemicals from industrial and agricultural wastewater, Trends Biotechnol., 22, 477, 10.1016/j.tibtech.2004.07.001

Saba, 2017, Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): An overview, Renew. Sustain. Energy Rev., 73, 75, 10.1016/j.rser.2017.01.115

Cucu, 2013, Microalgae as native oxygen suppliers in bicameral microbial fuel cells, Dig. J. Nanomater. Biostruct., 8, 1301

Powell, 2011, A microbial fuel cell with a photosynthetic microalgae cathodic half cell coupled to a yeast anodic half cell, Energy Sources Part A, 33, 440, 10.1080/15567030903096931

Commault, 2014, Photosynthetic biocathode enhances the power output of a sediment-type microbial fuel cell, N. Z. J. Bot., 52, 48, 10.1080/0028825X.2013.870217

Wang, 2010, Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs), Biosens. Bioelectron., 25, 2639, 10.1016/j.bios.2010.04.036

Juang, 2012, Power generation capabilities of microbial fuel cells with different oxygen supplies in the cathodic chamber, Appl. Biochem. Biotechnol., 167, 714, 10.1007/s12010-012-9708-6

Wu, 2013, Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation, Appl. Biochem. Biotechnol., 171, 2082, 10.1007/s12010-013-0476-8

Dunahay, 1996, Manipulation of microalgal lipid production using genetic engineering, Appl. Biochem. Biotechnol., 57, 223, 10.1007/BF02941703

Courchesne, 2009, Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches, J. Biotechnol., 141, 31, 10.1016/j.jbiotec.2009.02.018

Siloto, 2009, Directed evolution of acyl-CoA: Diacylglycerol acyltransferase: Development and characterization of Brassica napus DGAT1 mutagenized libraries, Plant Physiol. Biochem., 47, 456, 10.1016/j.plaphy.2008.12.019

Posewitz, 2005, Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii, Biochem. Soc. Trans., 33, 102, 10.1042/BST0330102

Posewitz, 2004, Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii, Plant Cell, 16, 2151, 10.1105/tpc.104.021972

Ramazanov, 2006, Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content, Phycol. Res., 54, 255, 10.1111/j.1440-1835.2006.00416.x

Beer, 2009, Engineering algae for biohydrogen and biofuel production, Curr. Opin. Biotechnol., 20, 264, 10.1016/j.copbio.2009.06.002

Melis, 2007, Hydrogen fuel production by transgenic microalgae, Adv. Exp. Med. Biol., 616, 110, 10.1007/978-0-387-75532-8_10

Kruse, 2005, Improved photobiological H2 production in engineered green algal cells, J. Biol. Chem., 280, 34170, 10.1074/jbc.M503840200

Surzycki, 2007, Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas, Proc. Natl. Acad. Sci. USA, 104, 17548, 10.1073/pnas.0704205104

Mussgnug, 2007, Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion, Plant Biotechnol. J., 5, 802, 10.1111/j.1467-7652.2007.00285.x

Rasala, B.A., Gimpel, J.A., Tran, M., Hannon, M.J., Miyake-stoner, S.J., Specht, E.A., and Mayfield, S.P. (2013). Genetic engineering to improve algal biofuels production. Algae for Biofuels and Energy, Springer.

Chen, 2006, Growing phototrophic cells without light, Biotech. Lett., 28, 607, 10.1007/s10529-006-0025-4

Fischer, 1999, Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae), J. Phycol., 35, 113, 10.1046/j.1529-8817.1999.3510113.x

Hallmann, 1996, The Chlorella hexose/H + symporter is a useful selectable marker and biochemical reagent when expressed in Volvox, Proc. Natl. Acad. Sci. USA, 93, 669, 10.1073/pnas.93.2.669

Doebbe, 2007, Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production, J. Biotechnol., 131, 27, 10.1016/j.jbiotec.2007.05.017

Zaslavskaia, 2001, Trophic conversion of an obligate photoautotrophic organism through metabolic engineering, Science, 292, 2073, 10.1126/science.160015

Radakovits, 2010, Genetic engineering of algae for enhanced biofuel production, Eukaryot. Cell, 9, 486, 10.1128/EC.00364-09

Wilson, W., and Brand, J. (October, January 30). Principles of bioprospecting for microalgae. Proceedings of the Algae Biomass Summit, Orlando, FL, USA.

Saladini, 2016, Guidelines for emergy evaluation of first, second and third generation biofuels, Renew. Sustain. Energy Rev., 66, 221, 10.1016/j.rser.2016.07.073

Tomei, 2016, Food versus fuel? Going beyond biofuels, Land Use Policy, 56, 320, 10.1016/j.landusepol.2015.11.015

Wise, T.A., and Cole, E. (2015). Mandating Food Insecurity: The Global Impacts of Rising Biofuel Mandates and Targets, Global Development and Environment Institute.

Office of Energy Efficiency and Renewable Energy (2010). National Algal Biofuels Technology Roadmap.

Cabanelas, 2013, Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal, Bioresour. Technol., 131, 429, 10.1016/j.biortech.2012.12.152

Pimentel, 2005, Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower, Nat. Resour. Res., 14, 65, 10.1007/s11053-005-4679-8

Mutanda, 2011, Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production, Bioresour. Technol., 102, 57, 10.1016/j.biortech.2010.06.077

Savage, 2012, Algae under pressure and in hot water, Science, 338, 1039, 10.1126/science.1224310

Hall, 2011, Seeking to understand the reasons for different energy return on investment (EROI) estimates for biofuels, Sustainability, 3, 2413, 10.3390/su3122413

Sills, 2012, Quantitative uncertainty analysis of life cycle assessment for algal biofuel production, Environ. Sci. Technol., 47, 687, 10.1021/es3029236

Youngs, H., and Somerville, C.R. (2013). California’s Energy Future. The Potential for Biofuels, California Council on Science and Technology.

Gonzalez, 2015, Characterization of discrete equine intestinal epithelial cell lineages, Am. J. Vet. Res., 76, 358, 10.2460/ajvr.76.4.358

Ruiz, 2016, Towards industrial products from microalgae, Energy Environ. Sci., 9, 3036, 10.1039/C6EE01493C

Rizwan, 2015, Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges, Appl. Energy, 150, 69, 10.1016/j.apenergy.2015.04.018

Wijffels, 2013, Biorefinery of microalgae for food and fuel, Bioresour. Technol., 135, 142, 10.1016/j.biortech.2012.10.135

Pradhan, R.R., Pradhan, R.R., Das, S., Dubey, B., and Dutta, A. (2017). Bioenergy combined with carbon capture potential by microalgae at flue gas-based carbon sequestration plant of NALCO as accelerated carbon sink. Carbon Utilization, Springer.

Li, 2008, Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans, Appl. Microbiol. Biotechnol., 81, 629, 10.1007/s00253-008-1681-1

Langley, 2012, A critical evaluation of CO2 supplementation to algal systems by direct injection, Biochem. Eng. J., 68, 70, 10.1016/j.bej.2012.07.013