Algae-Based Biorefinery as a Sustainable Renewable Resource
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barsanti L, Coltelli P, Evangelista V, Frassanito AM, Passarelli V, Vesentini N, Gualtieri P (2008) Oddities and curiosities in the algal world. In: NATO Secur. through Sci. Ser. C Environ. Secur. Springer, Dordrecht, pp 353–392. https://doi.org/10.1007/978-1-4020-8480-5_17
Maier R, Pepper I, Gerba C (2015) Environmental microbiology, Third edn. Academic Press, Cambridge, pp 9–36
Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286. https://doi.org/10.1016/j.copbio.2010.03.005
Sharma P, Khetmalas MB, Tandon GD (2013) Biofuels from green microalgae. In: Biotechnol. Prospect. Appl. Springer India, pp 95–112. https://doi.org/10.1007/978-81-322-1683-4_9
Barsanti L, Gualtieri P Algae: anatomy, biochemistry, and biotechnology, Second edn. Academic press
Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science. 329:796–799. https://doi.org/10.1126/science.1189003
Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. https://doi.org/10.1007/s00253-004-1647-x
Dittami SM, Eveillard D, Tonon T (2014) A metabolic approach to study algal-bacterial interactions in changing environments. Mol Ecol 23:1656–1660. https://doi.org/10.1111/mec.12670
Higgins BT, Gennity I, Fitzgerald PS, Ceballos SJ, Fiehn O, VanderGheynst JS (2018) Algal–bacterial synergy in treatment of winery wastewater. Npj Clean Water 1:6. https://doi.org/10.1038/s41545-018-0005-y
Marcilhac C, Sialve B, Pourcher AM, Ziebal C, Bernet N, Béline F (2015) Control of nitrogen behaviour by phosphate concentration during microalgal-bacterial cultivation using digestate. Bioresour Technol 175:224–230. https://doi.org/10.1016/j.biortech.2014.10.022
Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 43:90–93. https://doi.org/10.1038/nature04056
Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003
Chen Z, Lei X, Zhang B, Yang L, Zhang H, Zhang J, Li Y, Zheng W, Tian Y, Liu J, Zheng T (2014) First report of Pseudobodo sp, a new pathogen for a potential energy-producing algae: Chlorella vulgaris cultures. PLoS One 9:e89571. https://doi.org/10.1371/journal.pone.0089571
Dittami SM, Duboscq-Bidot L, Perennou M, Gobet A, Corre E, Boyen C, Tonon T (2016) Host-microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. ISME J 10:51–63. https://doi.org/10.1038/ismej.2015.104
Lian J, Wijffels RH, Smidt H, Sipkema D (2018) The effect of the algal microbiome on industrial production of microalgae. Microb Biotechnol 11:806–818. https://doi.org/10.1111/1751-7915.13296
Valdovinos-García EM, Barajas-Fernández J, de los Ángeles Olán-Acosta M, Petriz-Prieto A, Guzmán-López MG, Bravo-Sánchez M (2020) Techno-economic study of CO2 capture of a thermoelectric plant using microalgae (Chlorella vulgaris) for production of feedstock for bioenergy. Energies. 13:413. https://doi.org/10.3390/en13020413
Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36. https://doi.org/10.1007/s00253-007-1285-1
Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93. https://doi.org/10.1016/j.jbiotec.2004.01.013
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
Dillehay TD, Ramírez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD (2008) Monte Verde: seaweed, food, medicine, and the peopling of South America. Science. 320:784–786. https://doi.org/10.1126/science.1156533
Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Seto Y, Ter Schure E, Van Boven A, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154:87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030
De Jesus Raposo MF, De Morais RMSC, De Morais AMMB (2013) Health applications of bioactive compounds from marine microalgae. Life Sci 93:479–486. https://doi.org/10.1016/j.lfs.2013.08.002
Ritala A, Häkkinen ST, Toivari M, Wiebe MG (2017) Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front Microbiol 8:2009. https://doi.org/10.3389/fmicb.2017.02009
Dillon JC, Phuc AP, Dubacq JP (1995) Nutritional value of the alga Spirulina. In: World Rev. Nutr. Diet. Karger Publishers, pp 32–46. https://doi.org/10.1159/000424464
Boland MJ, Rae AN, Vereijken JM, Meuwissen MPM, Fischer ARH, van Boekel MAJS, Rutherfurd SM, Gruppen H, Moughan PJ, Hendriks WH (2013) The future supply of animal-derived protein for human consumption. Trends Food Sci Technol 29:62–73. https://doi.org/10.1016/j.tifs.2012.07.002
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science (80-) 327:812–818. https://doi.org/10.1126/science.1185383
Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” foods-possibilities and challenges. Compr Rev Food Sci Food Saf 9:655–675. https://doi.org/10.1111/j.1541-4337.2010.00132.x
Raja A, Vipin C, Aiyappan A (2013) Biological importance of marine algae-an overview. Int J Curr Microbiol App Sci 2:222–227
Michiels J, Skrivanova E, Missotten J, Ovyn A, Mrazek J, De Smet S, Dierick N (2012) Intact brown seaweed ( Ascophyllum nodosum ) in diets of weaned piglets: effects on performance, gut bacteria and morphology and plasma oxidative status. J Anim Physiol Anim Nutr (Berl) 96:1101–1111. https://doi.org/10.1111/j.1439-0396.2011.01227.x
Nath PR, Khozin-Goldberg I, Cohen Z, Boussiba S, Zilberg D (2012) Dietary supplementation with the microalgae Parietochloris incisa increases survival and stress resistance in guppy (Poecilia reticulata) fry. Aquac Nutr 18:167–180. https://doi.org/10.1111/j.1365-2095.2011.00885.x
Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds, http://tatup.de/index.php/tatup/article/download/717/1300 (accessed March 13, 2021).
Kim SK, Karadeniz F (2011) Anti-HIV activity of extracts and compounds from marine algae. In: Adv. Food Nutr. Res. Academic Press Inc., pp 255–265. https://doi.org/10.1016/B978-0-12-387669-0.00020-X
Bouhlal R, Haslin C, Chermann JC, Colliec-Jouault S, Sinquin C, Simon G, Cerantola S, Riadi H, Bourgougnon N (2011) Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales). Mar Drugs 9:1187–1209. https://doi.org/10.3390/md9071187
de Felício R, de Albuquerque S, Young MCM, Yokoya NS, Debonsi HM (2010) Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J Pharm Biomed Anal 52:763–769. https://doi.org/10.1016/j.jpba.2010.02.018
Kim SK, Thomas NV, Li X (2011) Anticancer compounds from marine macroalgae and their application as medicinal foods. In: Adv. Food Nutr. Res. Academic Press Inc., pp 213–224. https://doi.org/10.1016/B978-0-12-387669-0.00016-8
Howard SJ, Hopwood S, Davies SC (2014) Antimicrobial resistance: a global challenge, vol 6, p 236ed10. https://doi.org/10.1126/scitranslmed.3009315
Abu-Ghannam N, Rajauria G (2013) Antimicrobial activity of compounds isolated from algae. In: Funct. ingredients from algae foods nutraceuticals. Elsevier Ltd, pp 287–306. https://doi.org/10.1533/9780857098689.2.287
Manivannan K, Karthikai Devi G, Anantharaman P, Balasubramanian T (2011) Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar, Asian Pac. J Trop Biomed 1:114–120. https://doi.org/10.1016/S2221-1691(11)60007-5
Lomoljo RM, Ismail A, Yap CK (2009) Nitrate, ammonia and phosphate concentrations in the surface water of Kuala Gula Bird Sanctuary, west coast of Peninsular Malaysia. Pertanika J Trop Agr Sci 32(1):1–5
Abd El-Baky HH, El-Baz FK, El-Baroty GS (2009) Natural preservative ingredient from marine alga Ulva lactuca L. Int J Food Sci Technol 44:1688–1695. https://doi.org/10.1111/j.1365-2621.2009.01926.x
Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39. https://doi.org/10.1016/j.tifs.2007.07.012
Sheu MJ, Huang GJ, Wu CH, Chen JS, Chang HY, Chang SJ, Chung JG (2008) Ethanol extract of Dunaliella salina induces cell cycle arrest and apoptosis in A549 human non-small cell lung cancer cells. in vivo (Brooklyn) 22(3):369–378
Dmytryk A, Tuhy Ł, Chojnacka K (2017) Algae as source of pharmaceuticals. In: Prospect. Challenges Algal Biotechnol. Springer Singapore, pp 295–310. https://doi.org/10.1007/978-981-10-1950-0_11
de Jesus RM, de Morais A, de Morais R (2015) Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 13:2967–3028. https://doi.org/10.3390/md13052967
Boo HJ, Hong JY, Kim SC, Kang JI, Kim MK, Kim EJ, Hyun JW, Koh YS, Yoo ES, Kwon JM, Kang HK (2013) The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs 11:2982–2999. https://doi.org/10.3390/md11082982
Gammone M, Riccioni G, D’Orazio N (2015) Marine carotenoids against oxidative stress: effects on human health. Mar Drugs 13:6226–6246. https://doi.org/10.3390/md13106226
Zhang B, Zhang X (2013) Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol Prog 29:1230–1238. https://doi.org/10.1002/btpr.1769
Sithranga Boopathy N, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J Oncol 2010:1–18. https://doi.org/10.1155/2010/214186
Zhou P, Lou Yang X, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang C, Chen HD, Chen J, Luo Y, Guo H, Di Jiang R, Liu MQ, ChenY SXR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. https://doi.org/10.1038/s41586-020-2012-7
Ginsberg HS, Goebel WF, Horsfall FL (1947) Inhibition of mumps virus multiplication by a polysaccharide. Exp Biol Med 66:99–100. https://doi.org/10.3181/00379727-66-15995P
Deig EF, Ehresmann DW, Hatch MT, Riedlinger DJ (1974) Inhibition of herpesvirus replication by marine algae extracts. Antimicrob Agents Chemother 6:524–525. https://doi.org/10.1128/AAC.6.4.524
Turon V, Trably E, Fouilland E, Steyer JP (2016) Potentialities of dark fermentation effluents as substrates for microalgae growth: a review. Process Biochem 51:1843–1854. https://doi.org/10.1016/j.procbio.2016.03.018
Weill P, Plissonneau C, Legrand P, Rioux V, Thibault R (2020) May omega-3 fatty acid dietary supplementation help reduce severe complications in Covid-19 patients? Biochimie. 179:275–280. https://doi.org/10.1016/j.biochi.2020.09.003
Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13. https://doi.org/10.1104/pp.108.130195
Savci S (2012) Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1:287–292. https://doi.org/10.1016/j.apcbee.2012.03.047
Krishna Veni D, Kannan P, Jebakumar Immanuel Edison TN, Senthilkumar A (2017) Biochar from green waste for phosphate removal with subsequent disposal. Waste Manag 68:752–759. https://doi.org/10.1016/j.wasman.2017.06.032
Mazur H, Konop A, Synak R (2001) Indole-3-acetic acid in the culture medium of two axenic green microalgae. J Appl Phycol 13:35–42. https://doi.org/10.1023/A:1008199409953
Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10(1999):25–28. https://doi.org/10.1016/S0924-2244(99)00015-1
Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon NY 37:1379–1389. https://doi.org/10.1016/S0008-6223(98)00333-9
Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399. https://doi.org/10.1007/s00344-009-9103-x
Shuping DTT, Eloff JT (2017) The use of plants to protect plants and food against fungal pathogens: a review. Afr J Trad Complement Alternat Med 14(4):120–127
Zodape ST (2001) Seaweeds as a fertilizer. J Sci Ind Res 60:378–382
Chatterjee A, Singh S, Agrawal C, Yadav S, Rai R, Rai LC (2017) Role of algae as a biofertilizer. In: Algal green Chem. Recent Prog. Biotechnol. Elsevier, pp 189–200. https://doi.org/10.1016/B978-0-444-63784-0.00010-2
Hamed SM, Abd El-Rhman AA, Abdel-Raouf N, Ibraheem IBM (2018) Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef Univ J Basic Appl Sci 7:104–110. https://doi.org/10.1016/j.bjbas.2017.08.002
Rathour R, Kalola V, Johnson J, Jain K, Madamwar D, Desai C (2018) Treatment of various types of wastewaters using microbial fuel cell systems. In: Biomass, biofuels, Biochem. Microb. Electrochem. Technol. Sustain. Platf. Fuels, Chem. Remediat. Elsevier, pp 665–692. https://doi.org/10.1016/B978-0-444-64052-9.00027-3
Sekaran G, Karthikeyan S, Nagalakshmi C, Mandal AB (2013) Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater. Environ Sci Pollut Res 20:281–291. https://doi.org/10.1007/s11356-012-0891-3
Kim MH, Chung WT, Lee MK, Lee JY, Ohh SJ, Lee JH, Lee HY (2000) Kinetics of removing nitrogenous and phosphorus compounds from swine waste by growth of microalga, Spirulina platensis. J Microbiol Biotechnol 10:455–461
Kim MK, Ralph EH (2001) Effect of ionic copper toxicity on the growth of green alga, Selenastrum capricornutum. J Microbiol Biotechnol 11:211–216
Adamsson M, Dave G, Forsberg L, Guterstam B (1998) Toxicity identification evaluation of ammonia, nitrite and heavy metals at the Stensund Wastewater Aquaculture plant, Sweden. In: Water Sci. Technol., vol 38. Elsevier Sci Ltd, pp 151–157. https://doi.org/10.1016/S0273-1223(98)00459-4
Wollmann F, Dietze S, Ackermann J, Bley T, Walther T, Steingroewer J, Krujatz F (2019) Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci 19:860–871. https://doi.org/10.1002/elsc.201900071
Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V (2014) Functional ingredients from microalgae. Food Funct 5:1669–1685. https://doi.org/10.1039/c4fo00125g
Cavaliere M, Feng S, Soyer OS, Jiménez JI (2017) Cooperation in microbial communities and their biotechnological applications. Environ Microbiol 19:2949–2963. https://doi.org/10.1111/1462-2920.13767
Nguyen TDP, Nguyen DH, Lim JW, Chang CK, Leong HY, Tran TNT, Vu TBH, Nguyen TC, Show PL (2019) Investigation of the relationship between bacteria growth and lipid production cultivating of microalgae Chlorella vulgaris in seafood wastewater. Energies. 12:2282. https://doi.org/10.3390/en12122282
Velichkova KN, Sirakov I, Georgiev G, Velichkova K (2013) Cultivation of Botryococcus braunii strain in relation of its use for biodiesel production. J Bio Sci Biotechnol:157–162
Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186. https://doi.org/10.1007/s12010-009-8866-7
Sirakov I, Naneva Velichkova K, Stoyanova S, Velichkova K, Staykov Y, Velichkova K (2015) The importance of microalgae for aquaculture industry. Review Aqua-roof: pilot rooftop aquaponic system in Bulgaria View project accumulation of heavy metals in hydrobionts View project. Int J Fisheries Aquatic Studs 2(4):81–84
Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac Int 15:1–9. https://doi.org/10.1007/s10499-006-9060-3
Transgenics A, Hallmann BA (2007) Transgenic Plant Journal. In: Global Science Books
Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C (2017) Recent advances in peptide-based approaches for cancer treatment. Curr Med Chem 27:1174–1205. https://doi.org/10.2174/0929867325666171123204851
Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia-Bueno N, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Technol 27:57–61. https://doi.org/10.1016/j.tifs.2012.03.004
Sergejevová M, Masojídek J (2012) Chlorella biomass as feed supplement for freshwater fish: sterlet, A cipenser ruthenus. Aquac Res 44:157–159. https://doi.org/10.1111/j.1365-2109.2011.03011.x
Sánchez-Borrego FJ, Álvarez-Mateos P, García-Martín JF (2021) Biodiesel and other value-added products from bio-oil obtained from agrifood waste. Processes. 9:797. https://doi.org/10.3390/pr9050797
DeMates L (2013) What are the differences between biofuel, bioethanol, biodiesel, and biogas. The Sustain Coop 2013
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07.020
Ghobadian B (2012) Liquid biofuels potential and outlook in Iran. Renew Sust Energ Rev 16:4379–4384. https://doi.org/10.1016/j.rser.2012.05.013
Grahovac JA, Dodić JM, Dodić SN, Popov SD, Jokić AI, Zavargo ZZ (2011) Optimization of bioethanol production from intermediates of sugar beet processing by response surface methodology. Biomass Bioenergy 35:4290–4296. https://doi.org/10.1016/j.biombioe.2011.07.016
Marinho-Soriano E, Silva TSF, Moreira WSC (2001) Seasonal variation in the biomass and agar yield from Gracilaria cervicornis and Hydropuntia cornea from Brazil. Bioresour Technol 77:115–120. https://doi.org/10.1016/S0960-8524(00)00158-9
Freile-Pelegrín Y, Murano E (2005) Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresour Technol 96:295–302. https://doi.org/10.1016/j.biortech.2004.04.010
McHugh D (2003) A guide to seaweed industry. In: FAO (ed) FAO Fish. Tech. Pap. FAO Publications, Rome, pp 1–118
Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196. https://doi.org/10.1016/S1093-0191(00)00055-1
León-Martínez FM, Cano-Barrita PFDJ, Lagunez-Rivera L, Medina-Torres L (2014) Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement based materials. Constr Build Mater 53:190–202. https://doi.org/10.1016/j.conbuildmat.2013.11.068
Ramasubramani R, Praveen R, Sathyanarayanan KS (2016) Study on the strength properties of marine algae concrete. Rasayan J Chem 4:706–715
Chia WY, Ying Tang DY, Khoo KS, Kay Lup AN, Chew KW (2020) Nature’s fight against plastic pollution: algae for plastic biodegradation and bioplastics production. Environ Sci Ecotechnol 4:100065. https://doi.org/10.1016/j.ese.2020.100065
Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x
Rathod H (2015) Algae based waste water treatment Utilization of Natural Resources View project. https://doi.org/10.13140/2.1.1241.8885.
Wang C, Wang Z, Wang P, Zhang S (2016) Multiple effects of environmental factors on algal growth and nutrient thresholds for harmful algal blooms: application of response surface methodology. Environ Model Assess 21:247–259. https://doi.org/10.1007/s10666-015-9481-3
Yousry A, Soliman A, El-Sheekh M (2018) Antifungal bio-efficacy of the red algae Gracilaria confervoides extracts against three pathogenic fungi of cucumber plant. Middle East J Appl Sci 8(3):727–735
González LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262. https://doi.org/10.1016/S0960-8524(97)00029-1
Martínez ME, Sánchez S, Jiménez JM, El Yousfi F, Muñoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272. https://doi.org/10.1016/S0960-8524(99)00121-2
Ramya SS, Vijayanand N, Rathinavel S (2015) Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. Int J Recycl Org Waste Agric 4:167–173. https://doi.org/10.1007/s40093-015-0096-0
Jothinayagi N, Anbazhagan C (2009) Effect of seaweed liquid fertilizer of Sargassum wightii on the growth and biochemical characteristics of Abelmoschus esculentus (L.) Medikus. Recent Res Sci Technol 1(4):155–158
Thirumaran G, Arumugam M, Arumugam R, Anantharaman P (2009) Effect of seaweed liquid fertilizer on growth and pigment concentration of Cyamopsis tetrogonolaba (L) Taub. J Agron 2(2):57–66
Skjånes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33:172–215. https://doi.org/10.3109/07388551.2012.681625
Kang KH, Qian ZJ, Ryu B, Kim D, Kim SK (2012) Protective effects of protein hydrolysate from marine microalgae Navicula incerta on ethanol-induced toxicity in HepG2/CYP2E1 cells. Food Chem 132:677–685. https://doi.org/10.1016/j.foodchem.2011.10.031
Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274. https://doi.org/10.1007/s10295-008-0495-6
Matsudo MC, Bezerra RP, Sato S, Perego P, Converti A, Carvalho JCM (2009) Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem Eng J 43:52–57. https://doi.org/10.1016/j.bej.2008.08.009
Zodape ST, Mukhopadhyay S, Eswaran K, Reddy MP, Chikara J (2010) Enhanced yield and nutritional quality in green gram (Phaseolus radiata L.) treated with seaweed (Kappaphycus alvarezii) extract. J Sci Ind Res (India) 69:468–471